7,523 research outputs found

    Success Factors of European Syndromic Surveillance Systems: A Worked Example of Applying Qualitative Comparative Analysis

    Get PDF
    Introduction: Syndromic surveillance aims at augmenting traditional public health surveillance with timely information. To gain a head start, it mainly analyses existing data such as from web searches or patient records. Despite the setup of many syndromic surveillance systems, there is still much doubt about the benefit of the approach. There are diverse interactions between performance indicators such as timeliness and various system characteristics. This makes the performance assessment of syndromic surveillance systems a complex endeavour. We assessed if the comparison of several syndromic surveillance systems through Qualitative Comparative Analysis helps to evaluate performance and identify key success factors. Materials and Methods: We compiled case-based, mixed data on performance and characteristics of 19 syndromic surveillance systems in Europe from scientific and grey literature and from site visits. We identified success factors by applying crisp-set Qualitative Comparative Analysis. We focused on two main areas of syndromic surveillance application: seasonal influenza surveillance and situational awareness during different types of potentially health threatening events. Results: We found that syndromic surveillance systems might detect the onset or peak of seasonal influenza earlier if they analyse non-clinical data sources. Timely situational awareness during different types of events is supported by an automated syndromic surveillance system capable of analysing multiple syndromes. To our surprise, the analysis of multiple data sources was no key success factor for situational awareness. Conclusions: We suggest to consider these key success factors when designing or further developing syndromic surveillance systems. Qualitative Comparative Analysis helped interpreting complex, mixed data on small-N cases and resulted in concrete and practically relevant findings

    Syndromic surveillance to assess the potential public health impact of the Icelandic volcanic ash plume across the United Kingdom, April 2010

    Get PDF
    The Eyjafjallajökull volcano in Iceland erupted on 14 April 2010 emitting a volcanic ash plume that spread across the United Kingdom and mainland Europe. The Health Protection Agency and Health Protection Scotland used existing syndromic surveillance systems to monitor community health during the incident: there were no particularly unusual increases in any of the monitored conditions. This incident has again demonstrated the use of syndromic surveillance systems for monitoring community health in real time

    Syndromic surveillance: reports from a national conference, 2003

    Get PDF
    Overview of Syndromic Surveillance -- What is Syndromic Surveillance? -- Linking Better Surveillance to Better Outcomes -- Review of the 2003 National Syndromic Surveillance Conference - Lessons Learned and Questions To Be Answered -- -- System Descriptions -- New York City Syndromic Surveillance Systems -- Syndrome and Outbreak Detection Using Chief-Complaint Data - Experience of the Real-Time Outbreak and Disease Surveillance Project -- Removing a Barrier to Computer-Based Outbreak and Disease Surveillance - The RODS Open Source Project -- National Retail Data Monitor for Public Health Surveillance -- National Bioterrorism Syndromic Surveillance Demonstration Program -- Daily Emergency Department Surveillance System - Bergen County, New Jersey -- Hospital Admissions Syndromic Surveillance - Connecticut, September 2001-November 2003 -- BioSense - A National Initiative for Early Detection and Quantification of Public Health Emergencies -- Syndromic Surveillance at Hospital Emergency Departments - Southeastern Virginia -- -- Research Methods -- Bivariate Method for Spatio-Temporal Syndromic Surveillance -- Role of Data Aggregation in Biosurveillance Detection Strategies with Applications from ESSENCE -- Scan Statistics for Temporal Surveillance for Biologic Terrorism -- Approaches to Syndromic Surveillance When Data Consist of Small Regional Counts -- Algorithm for Statistical Detection of Peaks - Syndromic Surveillance System for the Athens 2004 Olympic Games -- Taming Variability in Free Text: Application to Health Surveillance -- Comparison of Two Major Emergency Department-Based Free-Text Chief-Complaint Coding Systems -- How Many Illnesses Does One Emergency Department Visit Represent? Using a Population-Based Telephone Survey To Estimate the Syndromic Multiplier -- Comparison of Office Visit and Nurse Advice Hotline Data for Syndromic Surveillance - Baltimore-Washington, D.C., Metropolitan Area, 2002 -- Progress in Understanding and Using Over-the-Counter Pharmaceuticals for Syndromic Surveillance -- -- Evaluation -- Evaluation Challenges for Syndromic Surveillance - Making Incremental Progress -- Measuring Outbreak-Detection Performance By Using Controlled Feature Set Simulations -- Evaluation of Syndromic Surveillance Systems - Design of an Epidemic Simulation Model -- Benchmark Data and Power Calculations for Evaluating Disease Outbreak Detection Methods -- Bio-ALIRT Biosurveillance Detection Algorithm Evaluation -- ESSENCE II and the Framework for Evaluating Syndromic Surveillance Systems -- Conducting Population Behavioral Health Surveillance by Using Automated Diagnostic and Pharmacy Data Systems -- Evaluation of an Electronic General-Practitioner-Based Syndromic Surveillance System -- National Symptom Surveillance Using Calls to a Telephone Health Advice Service - United Kingdom, December 2001-February 2003 -- Field Investigations of Emergency Department Syndromic Surveillance Signals - New York City -- Should We Be Worried? Investigation of Signals Generated by an Electronic Syndromic Surveillance System - Westchester County, New York -- -- Public Health Practice -- Public Health Information Network - Improving Early Detection by Using a Standards-Based Approach to Connecting Public Health and Clinical Medicine -- Information System Architectures for Syndromic Surveillance -- Perspective of an Emergency Physician Group as a Data Provider for Syndromic Surveillance -- SARS Surveillance Project - Internet-Enabled Multiregion Surveillance for Rapidly Emerging Disease -- Health Information Privacy and Syndromic Surveillance SystemsPapers from the second annual National Syndromic Surveillance Conference convened by the New York City Department of Health and Mental Hygiene, the New York Academy of Medicine, and the CDC in New York City during Oct. 23-24, 2003. Published as the September 24, 2004 supplement to vol. 53 of MMWR. Morbidity and mortality weekly report.1571461

    Meeting the International Health Regulations (2005) surveillance core capacity requirements at the subnational level in Europe: the added value of syndromic surveillance

    Get PDF
    BACKGROUND: The revised World Health Organization's International Health Regulations (2005) request a timely and all-hazard approach towards surveillance, especially at the subnational level. We discuss three questions of syndromic surveillance application in the European context for assessing public health emergencies of international concern: (i) can syndromic surveillance support countries, especially the subnational level, to meet the International Health Regulations (2005) core surveillance capacity requirements, (ii) are European syndromic surveillance systems comparable to enable cross-border surveillance, and (iii) at which administrative level should syndromic surveillance best be applied? DISCUSSION: Despite the ongoing criticism on the usefulness of syndromic surveillance which is related to its clinically nonspecific output, we demonstrate that it was a suitable supplement for timely assessment of the impact of three different public health emergencies affecting Europe. Subnational syndromic surveillance analysis in some cases proved to be of advantage for detecting an event earlier compared to national level analysis. However, in many cases, syndromic surveillance did not detect local events with only a small number of cases. The European Commission envisions comparability of surveillance output to enable cross-border surveillance. Evaluated against European infectious disease case definitions, syndromic surveillance can contribute to identify cases that might fulfil the clinical case definition but the approach is too unspecific to comply to complete clinical definitions. Syndromic surveillance results still seem feasible for comparable cross-border surveillance as similarly defined syndromes are analysed. We suggest a new model of implementing syndromic surveillance at the subnational level. In this model, syndromic surveillance systems are fine-tuned to their local context and integrated into the existing subnational surveillance and reporting structure. By enhancing population coverage, events covering several jurisdictions can be identified at higher levels. However, the setup of decentralised and locally adjusted syndromic surveillance systems is more complex compared to the setup of one national or local system. SUMMARY: We conclude that syndromic surveillance if implemented with large population coverage at the subnational level can help detect and assess the local and regional effect of different types of public health emergencies in a timely manner as required by the International Health Regulations (2005)

    Preferred Workflows for Syndromic Surveillance Systems

    Get PDF
    Workflows are a sequence of information processing operations that people carry out to meet certain in-formational goals [1]. Using various user-centered design (UCD) techniques we uncovered the workflows that epidemiologists wished to follow when using syndromic surveillance (SS) systems

    A Methodological Framework for the Evaluation of Syndromic Surveillance Systems: A Case Study of England

    Get PDF
    Background: Syndromic surveillance complements traditional public health surveillance by collecting and analysing health indicators in near real time. The rationale of syndromic surveillance is that it may detect health threats faster than traditional surveillance systems permitting more timely, and hence potentially more effective public health action. The effectiveness of syndromic surveillance largely relies on the methods used to detect aberrations. Very few studies have evaluated the performance of syndromic surveillance systems and consequently little is known about the types of events that such systems can and cannot detect. Methods: We introduce a framework for the evaluation of syndromic surveillance systems that can be used in any setting based upon the use of simulated scenarios. For a range of scenarios this allows the time and probability of to be determined and uncertainty is fully incorporated. In addition, we demonstrate how such a framework can model the benefits of increases in the number of centres reporting syndromic data and also determine the minimum size of outbreaks that can or cannot be detected. Here, we demonstrate its utility using simulations of national influenza outbreaks and localised outbreaks of cryptosporidiosis. Results: Influenza outbreaks are consistently detected with larger outbreaks being detected in a more timely manner. Small cryptosporidiosis outbreaks (<1000 symptomatic individuals) are unlikely to be detected. We also demonstrate the advantages of having multiple syndromic data streams (e.g. emergency attendance data, telephone helpline data, general practice consultation data) as different streams are able to detect different types outbreaks with different efficacy (e.g. emergency attendance data are useful for the detection of pandemic influenza but not for outbreaks of cryptosporidiosis). We also highlight that for any one disease, the utility of data streams may vary geographically, and that the detection ability of syndromic surveillance varies seasonally (e.g. an influenza outbreak starting in July is detected sooner than one starting later in the year). We argue that our framework constitutes a useful tool for public health emergency preparedness in multiple settings. Conclusions: The proposed framework allows the exhaustive evaluation of any syndromic surveillance system and constitutes a useful tool for emergency preparedness and response

    Using Ontario's "Telehealth" health telephone helpline as an early-warning system: a study protocol

    Get PDF
    BACKGROUND: The science of syndromic surveillance is still very much in its infancy. While a number of syndromic surveillance systems are being evaluated in the US, very few have had success thus far in predicting an infectious disease event. Furthermore, to date, the majority of syndromic surveillance systems have been based primarily in emergency department settings, with varying levels of enhancement from other data sources. While research has been done on the value of telephone helplines on health care use and patient satisfaction, very few projects have looked at using a telephone helpline as a source of data for syndromic surveillance, and none have been attempted in Canada. The notable exception to this statement has been in the UK where research using the national NHS Direct system as a syndromic surveillance tool has been conducted. METHODS/DESIGN: The purpose of our proposed study is to evaluate the effectiveness of Ontario's telephone nursing helpline system as a real-time syndromic surveillance system, and how its implementation, if successful, would have an impact on outbreak event detection in Ontario. Using data collected retrospectively, all "reasons for call" and assigned algorithms will be linked to a syndrome category. Using different analytic methods, normal thresholds for the different syndromes will be ascertained. This will allow for the evaluation of the system's sensitivity, specificity and positive predictive value. The next step will include the prospective monitoring of syndromic activity, both temporally and spatially. DISCUSSION: As this is a study protocol, there are currently no results to report. However, this study has been granted ethical approval, and is now being implemented. It is our hope that this syndromic surveillance system will display high sensitivity and specificity in detecting true outbreaks within Ontario, before they are detected by conventional surveillance systems. Future results will be published in peer-reviewed journals so as to contribute to the growing body of evidence on syndromic surveillance, while also providing an non US-centric perspective

    Developing a multidisciplinary syndromic surveillance academic research programme in the United Kingdom: benefits for public health surveillance

    Get PDF
    Syndromic surveillance is growing in stature internationally as a recognised and innovative approach to public health surveillance. Syndromic surveillance research uses data captured by syndromic surveillance systems to investigate specific hypotheses or questions. However, this research is often undertaken either within established public health organisations or the academic setting, but often not together. Public health organisations can provide access to health-related data and expertise in infectious and non-infectious disease epidemiology and clinical interpretation of data. Academic institutions can optimise methodological rigour, intellectual clarity and establish routes for applying to external research funding bodies to attract money to fund projects. Together, these competencies can complement each other to enhance the public health benefits of syndromic surveillance research. This paper describes the development of a multidisciplinary syndromic surveillance academic research programme in England, United Kingdom, its aims, goals and benefits to public health
    • …
    corecore