1,779 research outputs found

    Synchronizing non-deterministic finite automata

    Get PDF
    In this paper, we show that every D3-directing CNFA can be mapped uniquely to a DFA with the same synchronizing word length. This implies that \v{C}ern\'y's conjecture generalizes to CNFAs and that the general upper bound for the length of a shortest D3-directing word is equal to the Pin-Frankl bound for DFAs. As a second consequence, for several classes of CNFAs sharper bounds are established. Finally, our results allow us to detect all critical CNFAs on at most 6 states. It turns out that only very few critical CNFAs exist.Comment: 21 page

    Synchronizing Words for Weighted and Timed Automata

    Get PDF
    The problem of synchronizing automata is concerned with the existence of a word that sends all states of the automaton to one and the same state. This problem has classically been studied for complete deterministic finite automata, with the existence problem being NLOGSPACE-complete. In this paper we consider synchronizing-word problems for weighted and timed automata. We consider the synchronization problem in several variants and combinations of these, including deterministic and non-deterministic timed and weighted automata, synchronization to unique location with possibly different clock valuations or accumulated weights, as well as synchronization with a safety condition forbidding the automaton to visit states outside a safety-set during synchronization (e.g. energy constraints). For deterministic weighted automata, the synchronization problem is proven PSPACE-complete under energy constraints, and in 3-EXPSPACE under general safety constraints. For timed automata the synchronization problems are shown to be PSPACE-complete in the deterministic case, and undecidable in the non-deterministic case

    Preimage problems for deterministic finite automata

    Full text link
    Given a subset of states SS of a deterministic finite automaton and a word ww, the preimage is the subset of all states mapped to a state in SS by the action of ww. We study three natural problems concerning words giving certain preimages. The first problem is whether, for a given subset, there exists a word \emph{extending} the subset (giving a larger preimage). The second problem is whether there exists a \emph{totally extending} word (giving the whole set of states as a preimage)---equivalently, whether there exists an \emph{avoiding} word for the complementary subset. The third problem is whether there exists a \emph{resizing} word. We also consider variants where the length of the word is upper bounded, where the size of the given subset is restricted, and where the automaton is strongly connected, synchronizing, or binary. We conclude with a summary of the complexities in all combinations of the cases

    Computational Complexity of Synchronization under Regular Commutative Constraints

    Full text link
    Here we study the computational complexity of the constrained synchronization problem for the class of regular commutative constraint languages. Utilizing a vector representation of regular commutative constraint languages, we give a full classification of the computational complexity of the constraint synchronization problem. Depending on the constraint language, our problem becomes PSPACE-complete, NP-complete or polynomial time solvable. In addition, we derive a polynomial time decision procedure for the complexity of the constraint synchronization problem, given some constraint automaton accepting a commutative language as input.Comment: Published in COCOON 2020 (The 26th International Computing and Combinatorics Conference); 2nd version is update of the published version and 1st version; both contain a minor error, the assumption of maximality in the NP-c and PSPACE-c results (propositions 5 & 6) is missing, and of incomparability of the vectors in main theorem; fixed in this version. See (new) discussion after main theore

    Primitive Automata that are Synchronizing

    Full text link
    A deterministic finite (semi)automaton is primitive if its transition monoid (semigroup) acting on the set of states has no non-trivial congruences. It is synchronizing if it contains a constant map (transformation). In analogy to synchronizing groups, we study the possibility of characterizing automata that are synchronizing if primitive. We prove that the implication holds for several classes of automata. In particular, we show it for automata whose every letter induce either a permutation or a semiconstant transformation (an idempotent with one point of contraction) unless all letters are of the first type. We propose and discuss two conjectures about possible more general characterizations.Comment: Note: The weak variant of our conjecture in a stronger form has been recently solved by Mikhail Volkov arXiv:2306.13317, together with several new results concerning our proble

    Synchronizing weighted automata

    Full text link
    We introduce two generalizations of synchronizability to automata with transitions weighted in an arbitrary semiring K=(K,+,*,0,1). (or equivalently, to finite sets of matrices in K^nxn.) Let us call a matrix A location-synchronizing if there exists a column in A consisting of nonzero entries such that all the other columns of A are filled by zeros. If additionally all the entries of this designated column are the same, we call A synchronizing. Note that these notions coincide for stochastic matrices and also in the Boolean semiring. A set M of matrices in K^nxn is called (location-)synchronizing if M generates a matrix subsemigroup containing a (location-)synchronizing matrix. The K-(location-)synchronizability problem is the following: given a finite set M of nxn matrices with entries in K, is it (location-)synchronizing? Both problems are PSPACE-hard for any nontrivial semiring. We give sufficient conditions for the semiring K when the problems are PSPACE-complete and show several undecidability results as well, e.g. synchronizability is undecidable if 1 has infinite order in (K,+,0) or when the free semigroup on two generators can be embedded into (K,*,1).Comment: In Proceedings AFL 2014, arXiv:1405.527
    corecore