588 research outputs found

    Synchronizing Automata Preserving a Chain of Partial Orders

    Full text link
    We present a new class of automata which strictly contains the class of aperiodic automata and shares with the latter certain synchronization properties. In particular, every strongly connected automaton in this new class is synchronizing and has a reset word of length [(n(n+1)/6] where n is the number of states of the automaton. © Springer-Verlag Berlin Heidelberg 2007.Supported by the Russian Foundation for Basic Research, grant 05-01-00540. The paper has been completed during the author’s stay at the University of Turku under the Finnish Mathematical Society International Visitors Program 2006–2007 ‘‘Algorithmic and Discrete Mathematics’’

    Synchronizing automata preserving a chain of partial orders

    Get PDF
    AbstractWe present a new class of automata which strictly contains the class of aperiodic automata and shares with the latter certain synchronization properties. In particular, every strongly connected automaton in this new class is synchronizing and has a synchronizing word of length ⌊n(n+1)6⌋ where n is the number of states of the automaton

    Checking Whether an Automaton Is Monotonic Is NP-complete

    Full text link
    An automaton is monotonic if its states can be arranged in a linear order that is preserved by the action of every letter. We prove that the problem of deciding whether a given automaton is monotonic is NP-complete. The same result is obtained for oriented automata, whose states can be arranged in a cyclic order. Moreover, both problems remain hard under the restriction to binary input alphabets.Comment: 13 pages, 4 figures. CIAA 2015. The final publication is available at http://link.springer.com/chapter/10.1007/978-3-319-22360-5_2

    Synchronizing automata with random inputs

    Full text link
    We study the problem of synchronization of automata with random inputs. We present a series of automata such that the expected number of steps until synchronization is exponential in the number of states. At the same time, we show that the expected number of letters to synchronize any pair of the famous Cerny automata is at most cubic in the number of states

    Synchronizing non-deterministic finite automata

    Get PDF
    In this paper, we show that every D3-directing CNFA can be mapped uniquely to a DFA with the same synchronizing word length. This implies that \v{C}ern\'y's conjecture generalizes to CNFAs and that the general upper bound for the length of a shortest D3-directing word is equal to the Pin-Frankl bound for DFAs. As a second consequence, for several classes of CNFAs sharper bounds are established. Finally, our results allow us to detect all critical CNFAs on at most 6 states. It turns out that only very few critical CNFAs exist.Comment: 21 page

    A linear bound on the k-rendezvous time for primitive sets of NZ matrices

    Full text link
    A set of nonnegative matrices is called primitive if there exists a product of these matrices that is entrywise positive. Motivated by recent results relating synchronizing automata and primitive sets, we study the length of the shortest product of a primitive set having a column or a row with k positive entries, called its k-rendezvous time (k-RT}), in the case of sets of matrices having no zero rows and no zero columns. We prove that the k-RT is at most linear w.r.t. the matrix size n for small k, while the problem is still open for synchronizing automata. We provide two upper bounds on the k-RT: the second is an improvement of the first one, although the latter can be written in closed form. We then report numerical results comparing our upper bounds on the k-RT with heuristic approximation methods.Comment: 27 pages, 10 figur

    Slowly synchronizing automata and digraphs

    Full text link
    We present several infinite series of synchronizing automata for which the minimum length of reset words is close to the square of the number of states. These automata are closely related to primitive digraphs with large exponent.Comment: 13 pages, 5 figure
    corecore