5 research outputs found

    Weak models of distributed computing, with connections to modal logic

    Get PDF
    This work presents a classification of weak models of distributed computing. We focus on deterministic distributed algorithms, and we study models of computing that are weaker versions of the widely-studied port-numbering model. In the port-numbering model, a node of degree d receives messages through d input ports and it sends messages through d output ports, both numbered with 1, 2,..., d. In this work, VVc is the class of all graph problems that can be solved in the standard port-numbering model. We study the following subclasses of VVc: VV: Input port i and output port i are not necessarily connected to the same neighbour. MV: Input ports are not numbered; algorithms receive a multiset of messages. SV: Input ports are not numbered; algorithms receive a set of messages. VB: Output ports are not numbered; algorithms send the same message to all output ports. MB: Combination of MV and VB. SB: Combination of SV and VB. Now we have many trivial containment relations, such as SB ⊆ MB ⊆ VB ⊆ VV ⊆ VVc, but it is not obvious if, e.g., either of VB ⊆ SV or SV ⊆ VB should hold. Nevertheless, it turns out that we can identify a linear order on these classes. We prove that SB � MB = VB � SV = MV = VV � VVc. The same holds for the constant-time versions of these classes. We also show that the constant-time variants of these classes can be characterised by a corresponding modal logic. Hence the linear order identified in this work has direct implications in the study of the expressibility of modal logic. Conversely, we can use tools from modal logic to study these classes

    Lower bounds for local approximation

    Get PDF
    In the study of deterministic distributed algorithms it is commonly assumed that each node has a unique O(log n)-bit identifier. We prove that for a general class of graph problems, local algorithms (constant-time distributed algorithms) do not need such identifiers: a port numbering and orientation is sufficient. Our result holds for so-called simple PO-checkable graph optimisation problems; this includes many classical packing and covering problems such as vertex covers, edge covers, matchings, independent sets, dominating sets, and edge dominating sets. We focus on the case of bounded-degree graphs and show that if a local algorithm finds a constant-factor approximation of a simple PO-checkable graph problem with the help of unique identifiers, then the same approximation ratio can be achieved on anonymous networks. As a corollary of our result, we derive a tight lower bound on the local approximability of the minimum edge dominating set problem. By prior work, there is a deterministic local algorithm that achieves the approximation factor of 4 − 1/⌊Δ/2⌋ in graphs of maximum degree Δ. This approximation ratio is known to be optimal in the port-numbering model—our main theorem implies that it is optimal also in the standard model in which each node has a unique identifier. Our main technical tool is an algebraic construction of homogeneously ordered graphs: We say that a graph is (α,r)-homogeneous if its nodes are linearly ordered so that an α fraction of nodes have pairwise isomorphic radius-r neighbourhoods. We show that there exists a finite (α,r)-homogeneous 2k-regular graph of girth at least g for any α < 1 and any r, k, and g.Peer reviewe
    corecore