
Distributed Computing (to appear) Preprint — November 12, 2013

Weak Models of Distributed Computing,
with Connections to Modal Logic

Lauri Hella · Matti Järvisalo · Antti Kuusisto · Juhana Laurinharju ·
Tuomo Lempiäinen · Kerkko Luosto · Jukka Suomela · Jonni Virtema

Abstract This work presents a classification of weak mod-
els of distributed computing. We focus on deterministic dis-
tributed algorithms, and study models of computing that are
weaker versions of the widely-studied port-numbering model.
In the port-numbering model, a node of degree d receives
messages through d input ports and sends messages through
d output ports, both numbered with 1,2, . . . ,d. In this work,
VVc is the class of all graph problems that can be solved in
the standard port-numbering model. We study the following
subclasses of VVc:

VV: Input port i and output port i are not necessarily con-
nected to the same neighbour.

MV: Input ports are not numbered; algorithms receive a
multiset of messages.

SV: Input ports are not numbered; algorithms receive a set
of messages.

VB: Output ports are not numbered; algorithms send the
same message to all output ports.

MB: Combination of MV and VB.
SB: Combination of SV and VB.

Now we have many trivial containment relations, such as
SB ⊆MB ⊆ VB ⊆ VV ⊆ VVc, but it is not obvious if, for
example, either of VB⊆ SV or SV ⊆ VB should hold. Nev-
ertheless, it turns out that we can identify a linear order on
these classes. We prove that SB(MB= VB(SV=MV=

VV (VVc. The same holds for the constant-time versions of
these classes.

L. Hella · K. Luosto · J. Virtema
School of Information Sciences, University of Tampere, Finland

M. Järvisalo · J. Laurinharju · T. Lempiäinen · J. Suomela
Helsinki Institute for Information Technology HIIT, Department of
Computer Science, University of Helsinki, Finland

A. Kuusisto
Institute of Computer Science, University of Wrocław, Poland

We also show that the constant-time variants of these
classes can be characterised by a corresponding modal logic.
Hence the linear order identified in this work has direct im-
plications in the study of the expressibility of modal logic.
Conversely, one can use tools from modal logic to study these
classes.

Keywords Distributed computing · Local algorithms ·
Modal logic ·Models of computation

1 Introduction

We introduce seven complexity classes, VVc, VV, MV, SV,
VB, MB, and SB, each defined as the class of graph problems
that can be solved with a deterministic distributed algorithm
in a certain variant of the widely-studied port-numbering
model. We present a complete characterisation of the con-
tainment relations between these classes, as well as their
constant-time counterparts, and identify connections between
these classes and questions related to modal logic.

1.1 State Machines

For our purposes, a distributed algorithm is best understood
as a state machine A. In a distributed system, each node is a
copy of the same state machine A. Computation proceeds in
synchronous steps. In each step, each machine

1. sends messages to its neighbours,
2. receives messages from its neighbours, and
3. updates its state based on the messages that it received.

If the new state is a stopping state, the machine halts.
Let us now formalise the setting studied in this work.

We use the notation [k] = {1,2, . . . ,k}. For each positive
integer ∆ , let F(∆) consist of all simple undirected graphs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24061180?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Lauri Hella et al.

1

2

3
1

2

3

2

11
2

2
1
2

1

1
1

G:

p:

3
2
1

1

2
1

2
1

=

Fig. 1 A port numbering p of graph G. Here we present p using two different notations; in the illustration on the left, the ports are explicitly shown,
while in the illustration on the right, the ports are given as the labels of the edges.

p:

3
2
1

1

2
1

2
1

=

3

1

2
1

2

3

2

11
2

2
1
1

2

1
1

G:

Fig. 2 A consistent port numbering.

of maximum degree at most ∆ . A distributed state machine
for F(∆) is a tuple A= (Y,Z,z0,M,m0,µ,δ), where

– Y is a finite set of stopping states,
– Z is a (possibly infinite) set of intermediate states such

that Y ∩Z = /0,
– z0 : {0,1, . . . ,∆}→Y ∪Z defines the initial state depend-

ing on the degree of the node,
– M is a (possibly infinite) set of messages,
– m0 ∈M is a special symbol for “no message”,
– µ : Z× [∆]→M is a function that constructs the outgoing

messages,
– δ : Z×M∆ → Y ∪Z defines the state transitions.

To simplify the notation, we extend the domains of µ and δ to
cover the stopping states: for all y∈Y , we define µ(y, i) =m0
for any i ∈ [∆], and δ (y,m) = y for any m ∈ M∆ . In other
words, a node that has stopped does not send any messages
and does not change its state any more.

1.2 Port Numbering

Now consider a graph G = (V,E) ∈ F(∆). We write deg(v)
for the degree of node v∈V . A port of G is a pair (v, i) where
v ∈V and i ∈ [deg(v)]. Let P(G) be the set of all ports of G.
Let p : P(G)→ P(G) be a bijection. Define

A(p) =
{
(u,v) : u ∈V , v ∈V , and

p((u, i)) = (v, j) for some i and j
}
,

A(G) =
{
(u,v) : {u,v} ∈ E

}
.

We say that p is a port numbering of G if A(p) = A(G); see
Fig. 1 for an example. The intuition here is that a node v ∈V

has deg(v) communication ports; if it sends a message to its
port (v, i), and p((v, i)) = (u, j), the message will be received
by its neighbour u from port (u, j).

We say that a port numbering is consistent if p is an
involution, that is,

p
(

p((v, i))
)
= (v, i) for all (v, i) ∈ P(G).

See Fig. 2 for an example.

1.3 Execution of a State Machine

For a fixed distributed state machine A, a graph G, and a
port numbering p, we can define the execution of A in (G, p)
recursively as follows.

The state of the system at time t = 0,1, . . . is represented
as a state vector xt : V → Y ∪Z. At time 0, we have

x0(u) = z0(deg(u))

for each u ∈V .
Now assume that we have defined the state xt at time t.

Let (u, i) ∈ P(G) and (v, j) = p−1((u, i)). Define

at+1(u, i) = µ(xt(v), j).

In words, at+1(u, i) is the message received by node u from
port (u, i) in round t + 1, or equivalently the message sent
by node v to port (v, j). For each u ∈ V we define a vector
at+1(u) of length ∆ as follows:

at+1(u) =
(
at+1(u,1), at+1(u,2), . . . , at+1(u,deg(u)),
m0,m0, . . . ,m0

)
.

Weak Models of Distributed Computing, with Connections to Modal Logic 3

In other words, we simply take all messages received by u,
in the order of increasing port number; the padding with the
dummy messages m0 is just for notational convenience so
that at+1(u) ∈M∆ . Finally, we define the new state of a node
u ∈V as follows:

xt+1(u) = δ (xt(u),at+1(u)).

We say that A stops in time T in (G, p) if xT (u) ∈ Y for
all u ∈V . If A stops in time T in (G, p), we say that S = xT
is the output of A in (G, p). Here S(u) = xT (u) is the local
output of u ∈V .

1.4 Graph Problems

A graph problem is a function Π that associates with each
undirected graph G = (V,E) a set Π(G) of solutions. Each
solution S ∈Π(G) is a mapping S : V → Y ; here Y is a finite
set that does not depend on G.

We emphasise that this definition is by no means univer-
sal; however, it is convenient for our purposes and covers a
wide range of classical graph problems:

– Finding a subset of vertices. A typical example is the task
of finding a maximal independent set: Y = {0,1}, and
each solution S is the indicator function of a maximal
independent set.

– Finding a partition of vertices. A typical example is the
task of finding a vertex 3-colouring: Y = {1,2,3}, and
each solution S is a valid 3-colouring of the graph.

– Deciding graph properties. A typical example is deciding
if a graph is Eulerian: Here Y = {0,1}. If G is Eulerian,
there is only one solution S with S(v) = 1 for all v ∈ V .
If G is not Eulerian, valid solutions are mappings S such
that S(v) = 0 for at least one v ∈ V . Put otherwise, all
nodes must accept a yes-instance, and at least one node
must reject a no-instance.

The idea is that a distributed state machine A solves a graph
problem Π if, for any graph G and for any port numbering of
G, the output ofA is a valid solution S∈Π(G). However, the
fact that we study graphs of bounded degree requires some
care; hence the following somewhat technical definition.

Let Π be a graph problem. Let T : N×N→ N. Let A =

(A1,A2, . . .) be a sequence of distributed state machines. We
say that A solves Π in time T if the following hold for any
∆ ∈N, any graph G ∈F(∆), and any port numbering p of G:

1. State machine A∆ stops in time T (∆ , |V |) in (G, p).
2. The output of A∆ is in Π(G).

We say that A solves Π in time T assuming consistency
if the above holds for any consistent port numbering p of G.
Note that we do not require that A∆ stops if the port number-
ing happens to be inconsistent.

m1 = a

m2 = bm3 = a

Vector:

Multiset:

Set:

received (a, b, a)

received {a, a, b}

received {a, b}

Fig. 3 Comparison of Vector, Multiset, and Set.

We say that A solves Π or A is an algorithm for Π if there
is any function T such that A solves Π in time T . We say
that A solves Π in constant time or A is a local algorithm for
Π if T (∆ ,n) = T ′(∆) for some T ′ : N→ N, independently
of n.

Remark 1 We emphasise that the term “constant time” refers
to the case of a fixed ∆ . We only require that for each given
∆ the running time of state machine A∆ on graph family
F(∆) is bounded by a constant. That is, “local algorithms”
are O(1)-time algorithms on any graph family of maximum
degree O(1).

1.5 Algorithm Classes

Now we are ready to introduce the concepts studied in this
work: variants of the definition of a distributed algorithm.

For a vector a = (a1,a2, . . . ,a∆) ∈M∆ we define

set(a) = {a1,a2, . . . ,a∆},
multiset(a) =

{
(m,n) : m ∈M, n = |{i ∈ [∆] : m = ai}|

}
.

In other words, multiset(a) discards the ordering of the ele-
ments of a, and set(a) furthermore discards the multiplicities.

Let Vector be the set of all distributed state machines
A, as defined in Section 1.1. We define three subclasses
of distributed state machines, Set⊆Multiset⊆ Vector, and
Broadcast⊆ Vector:

– A ∈ Multiset if multiset(a) = multiset(b) implies that
δ (x,a) = δ (x,b) holds for all x ∈ Z.

– A ∈ Set if set(a) = set(b) implies that δ (x,a) = δ (x,b)
holds for all x ∈ Z.

– A∈Broadcast if µ(x, i) = µ(x, j) holds for all x∈ Z and
i, j ∈ [∆].

Classes Multiset and Set are related to incoming mes-
sages; see Fig. 3 for an example. Intuitively, a state machine
in class Vector considers a vector of incoming messages,
while a state machine in Multiset considers a multiset of
incoming messages, and a state machine in Set considers a
set of incoming messages. In particular, state machines in
Multiset and Set do not have any access to the numbering of
incoming ports.

4 Lauri Hella et al.

m2

Vector:

m1 m3

Broadcast:

m

m m

Fig. 4 Comparison of Vector and Broadcast.

Class Broadcast is related to outgoing messages; see
Fig. 4 for an example. Intuitively, a state machine in class
Vector constructs a vector of outgoing messages, while a
state machine in Broadcast can only broadcast the same
message to all neighbours. In particular, state machines in
Broadcast do not have any access to the numbering of out-
going ports.

We extend the definitions to sequences of state machines
in a natural way:

Vector =
{
(A1,A2, . . .) : A∆ ∈ Vector for all ∆

}
,

Multiset =
{
(A1,A2, . . .) : A∆ ∈Multiset for all ∆

}
,

Set =
{
(A1,A2, . . .) : A∆ ∈ Set for all ∆

}
,

Broadcast =
{
(A1,A2, . . .) : A∆ ∈ Broadcast for all ∆

}
.

From now on, we will use the word algorithm to refer to
both distributed state machines A∈ Vector and to sequences
of distributed state machines A ∈ Vector, when there is no
risk of confusion.

1.6 Problem Classes

So far we have defined classes of algorithms; now we will
define seven classes of problems:

1. Π ∈ VVc if there exists an algorithm A ∈ Vector that
solves problem Π assuming consistency,

2. Π ∈ VV if there exists an algorithm A ∈ Vector that
solves problem Π ,

3. Π ∈MV if there exists an algorithm A ∈Multiset that
solves problem Π ,

4. Π ∈ SV if there exists an algorithm A ∈ Set that solves
problem Π ,

VVc

VV

MV

SV

VB

MB

SB

VVc

VV

MV

SV

VB

MB

SB

=

=

=

≠

≠

≠

(a) (b)

Fig. 5 Classes of graph problems. (a) Trivial subset relations between
the classes. (b) The linear order identified in this work.

5. Π ∈ VB if there exists an algorithm A ∈ Broadcast that
solves problem Π ,

6. Π ∈ MB if there exists an algorithm A ∈ Multiset∩
Broadcast that solves problem Π ,

7. Π ∈ SB if there exists an algorithm A ∈ Set∩Broadcast
that solves problem Π .

We will also define the constant-time variants of the classes:

1. Π ∈ VVc(1) if there exists a local algorithm A ∈ Vector
that solves problem Π assuming consistency,

2. Π ∈ VV(1) if there exists a local algorithm A ∈ Vector
that solves problem Π ,
. . .

Note that consistency is irrelevant for all other classes; we
only define the consistent variants of VV and VV(1). The
classes are summarised in Fig. 5a. Fig. 6 summarises what
information is available to an algorithm in each class.

Remark 2 In each problem class, we consider algorithms in
which each node knows its own degree. While this is natu-
ral in all other cases, it may seem odd in the case of class
SB. In principle, we could define yet another class of prob-
lems SBo, defined in terms of degree-oblivious algorithms
in Set∩Broadcast, i.e., algorithms with a constant initialisa-
tion function z0. However, it is easy to see that SBo is entirely
trivial—in essence, one can only solve the problem of dis-
tinguishing non-isolated nodes from isolated nodes—while
there are many non-trivial problems that we can solve in class
SB. In particular, it is trivial to prove that SBo (SB. Hence
we will not consider class SBo in this work. However, class
SBo is more interesting if one considers labelled graphs; see
Section 3.4.

Weak Models of Distributed Computing, with Connections to Modal Logic 5

3

1

2
1

2

3

2

11
2

2
1

1

2

1
1

1

2

3
1

2

3

2

11
2

2
1

2

1

1
1

VVc:

VV:

G:

1

2

3

1
2

2

1

1

MV, SV:

1

2

3

2

1

2
1

1

VB:

MB, SB:

Fig. 6 Auxiliary information available to a distributed algorithm in
each class.

2 Contributions

This work is a systematic study of the complexity classes
VVc, VV, MV, SV, VB, MB, and SB, as well as their constant-
time counterparts. Our main contributions are two-fold.

First, we present a complete characterisation of the con-
tainment relations between these classes. The definitions of
the classes imply the partial order depicted in Fig. 5a. For
example, classes VB and SV are seemingly orthogonal, and
it would be natural to assume that neither VB ⊆ SV nor
SV ⊆ VB holds. However, we show that this is not the case.
Unexpectedly, the classes form a linear order (see Fig. 5b):

SB(MB= VB(SV =MV = VV (VVc. (1)

In summary, instead of seven classes that are possibly distinct,
we have precisely four distinct classes. These four distinct
classes of problems can be concisely characterised as follows,
from the strongest to the weakest:

1. consistent port numbering (class VVc),
2. no incoming port numbers (class SV and equivalent),
3. no outgoing port numbers (class VB and equivalent),
4. neither (class SB).

We also show an analogous result for the constant-time ver-
sions:

SB(1)(MB(1) = VB(1)

(SV(1) =MV(1) = VV(1)

(VVc(1).

(2)

The main technical achievement here is proving that SV(1) =
MV(1) and SV=MV. This together with the ideas of a prior
work [5] leads to the linear orders (1) and (2).

As our second contribution, we identify a novel con-
nection between distributed computational complexity and
modal logic. In particular, classes VVc(1), VV(1), MV(1),
SV(1), VB(1), MB(1), and SB(1) have natural character-
isations using certain variants of modal logic. This corre-
spondence allows one to apply tools from the field of modal
logic—in particular, bisimulation—to facilitate the proofs of
(1) and (2). Conversely, we can lift our results from the field
of distributed algorithms to modal logic, by re-interpreting
the relations identified in (2).

Some of the equivalences between the classes are already
known by prior work—in particular, results that are similar to
MB= VB and MV = VV (VVc are implied by e.g., Boldi
et al. [10] and Yamashita and Kameda [62]. The main differ-
ences between our work and prior work can be summarised
as follows.

1. All results related to classes SV and SB are new. In partic-
ular, we are not aware of any prior work that has studied
class SV in this context.

6 Lauri Hella et al.

2. We approach the classification from the perspective of
locality. We not only prove the equivalences MB= VB
and SV = MV = VV but also show that in each case
the simulation of the stronger model is efficient. The
nodes do not need to know any global information on
the graph in advance (such as an upper bound on the
size of the graph), and the nodes do not need to gather
any information beyond their constant-radius neighbour-
hood. Our proofs yield the identical collapses for the
constant-time versions of the classes: MB(1) = VB(1)
and SV(1) =MV(1) = VV(1). Similarly, our separation
results only rely on problems that can be solved in con-
stant time in one of the classes, without any global infor-
mation.

3. The focus on locality also enables us to introduce the
connection with modal logic. We show how to derive all
separations between the complexity classes with bisimu-
lation arguments.

We will discuss related work in more detail in Section 3; see
also Tables 1 and 2.

3 Motivation and Related Work

In this work, we study deterministic distributed algorithms in
anonymous networks—all state transitions are deterministic,
all nodes run the same algorithm, and initially each node
knows only its own degree. This is a fairly weak model
of computation, and traditionally research has focused on
stronger models of distributed computing.

3.1 Stronger Models

There are two obvious extensions:

1. Networks with unique identifiers: Initially, all nodes are la-
belled with O(logn)-bit, globally unique identifiers. With
this extension, we arrive at Linial’s [42] model of compu-
tation; Peleg [49] calls it the LOCAL model.

2. Randomised distributed algorithms: The nodes have ac-
cess to a stream of random bits. The state transitions can
depend on the random bits.

Both of these extensions lead to a model that is strictly
stronger than any of the models studied in this work. The
problem of finding a maximal independent set is a good ex-
ample of a graph problem that separates the weak models
from the above extensions. The problem is clearly not in
VVc—a cycle with a symmetric port numbering is a sim-
ple counterexample—while it is possible to find a maximal
independent set fast in both of the above models.

3.2 Port-Numbering Model (VVc)

While most of the attention is on stronger models, one of the
weaker models has been studied extensively since the 1980s.
Unsurprisingly, it is the strongest of the family, model VVc,
and it is commonly known as the port-numbering model in
the literature.

The study of the port-numbering model was initiated
by Angluin [2] in 1980. Initially the main focus was on
problems that have a global nature—problems in which the
local output of a node necessarily depends on the global
properties of the input. Examples of papers from the first
two decades after Angluin’s pioneering work include Attiya
et al. [6], Yamashita and Kameda [59–61], and Boldi and
Vigna [13], who studied global functions, leader election
problems, spanning trees, and topological properties.

Based on the earlier work, research related to the port-
numbering model may look like a dead end: positive results
were rare. However, very recently, distributed algorithms in
the port-numbering model have become an increasingly im-
portant research topic—and surprisingly, the study of the
port-numbering model is now partially motivated by the de-
sire to understand distributed computing in stronger models
of computation.

The background is in the study of local algorithms, i.e.,
constant-time distributed algorithms [55]. The research di-
rection was initiated by Naor and Stockmeyer [46] in 1995,
and initially it looked like another area where most of the
results are negative—after all, it is difficult to imagine a non-
trivial graph problem that could be solved in constant time.
However, since 2005, we have seen a large number of local
algorithms for a wide range of graph problems: these include
algorithms for vertex covers [3, 5, 36, 37, 45, 51, 56], match-
ings [4, 31], dominating sets [20, 39–41], edge dominating
sets [54], set covers [5, 36, 37], semi-matchings [19], sta-
ble matchings [31], and linear programming [26–30, 36, 37].
Naturally, most of these algorithms are related to approxima-
tions and special cases, but nevertheless the sheer number of
such algorithms is a good demonstration of the unexpected
capabilities of local algorithms.

At first sight, constant-time algorithms in stronger models
and distributed algorithms in the port-numbering model seem
to be orthogonal concepts. However, in many cases a local
algorithm is also an algorithm in the port-numbering model.
Indeed, a formal connection between local algorithms and
the port-numbering model has been recently identified [32].

3.3 Weaker Models

As the study of the port-numbering model has been recently
revived, now is the right time to ask if it is justified to use VVc

as the standard model in the study of anonymous networks.

Weak Models of Distributed Computing, with Connections to Modal Logic 7

Algorithm Problem Term References
class class

Vector VVc port numbering [2]
local edge labelling [60]
local orientation [16, 25]
orientation [44]
complete port awareness [10]
monoid graph [47]
port-to-port [58, 62]
port-à-port [15]

Vector VV input/output port awareness [10]

Multiset MV output port awareness [10]
wireless in input [11]
mailbox [11]
port-to-mailbox [58, 62]
port-à-boı̂te [15]

Set SV —

Broadcast VB input port awareness [10]
wireless in output [11]
broadcast [11, 58]
broadcast-to-port [62]
diffusion-à-port [15]

Multiset∩ MB totalistic [57]
Broadcast wireless [11, 22, 48]

broadcast-to-mailbox [62]
diffusion-à-boı̂te [15]
mailbox-to-mailbox [58]
network without colours [13]
broadcast [5]
(no name) [38]

Set∩ SB beeping [1, 18]
Broadcast

Table 1 Prior work related to the weak models, and a summary of the
related terminology. We have identified the closest equivalent in our
classification, not necessarily an exact match—see also Table 2 for an
overview of the main differences.

First, the definition is somewhat arbitrary—it is not obvious
that VVc is the “right” class, instead of VV, for example.
Second, while the existence of a port numbering is easily
justified in the context of wired networks, weaker models
such as Broadcast and Set seem to make more sense from
the perspective of wireless networks.

If we had no positive examples of problems in classes
below VVc, there would be little motivation for pursuing
further. However, the recent work related to the vertex cover
problem [5] calls for further investigation. It turned out that
2-approximation of vertex cover is a graph problem that is
not only in VVc(1), but also in MB(1)—that is, we have a
non-trivial graph problem that does not require any access to
either outgoing or incoming port numbers. One ingredient of
the vertex cover algorithm is the observation that MB(1) =
VB(1), which raises the question of the existence of other
similar collapses in the hierarchy of weak models.

Focuses on the case of a known topology
G = (V,E), a known |V |, or a known upper
bound on |V |.

[10, 13, 16, 48, 60, 62]

Proves equivalences between the models
from a global perspective; the simulation
overhead can be linear in |V |. Our work
shows that the equivalences hold also from
a local perspective; the simulation overhead
is bounded by a constant.

[10, 62]

Studies functions that map the local inputs
of the nodes to specific local outputs of the
nodes. Our work studies graph problems—
the local outputs depend on the structure of
G, not on the local inputs.

[11, 47, 48]

Considers the problem of deciding whether
a given problem can be solved in a given
graph. In our work, we are interested in
the existence of a problem and a graph that
separates two models.

[13, 47, 48, 61]

Studies individual problems, not classes of
problems.

[1, 5, 10, 38, 58, 61, 62]

Provides general results, but does not study
the implications from the perspective of the
weak models and their relative strength.

[12, 13]

Does not consider models that are weaker
than the port-numbering model.

[2, 6, 16, 43, 60, 61]

Assumes a specific network structure (cycle,
grid, etc.), or auxiliary information in local
inputs.

[6, 22, 25, 38, 44, 57]

Studies randomised, asynchronous algo-
rithms.

[1, 23]

Table 2 Main differences in the problem setting between this work and
selected prior work.

We are by no means the first to investigate the weak mod-
els. Computation in models that are strictly weaker than the
standard port-numbering model has been studied since the
1990s, under various terms—see Table 1 for a summary of
terminology, and Table 2 for an overview of the main differ-
ences in the research directions. Questions related to specific
problems, models, and graph families have been studied pre-
viously, and indeed many of the techniques and ideas that
we use are now standard—this includes the use of symme-
try and isomorphisms, local views, covering graphs (lifts)
and universal covering graphs, and factors and factorisations.
Mayer, Naor, and Stockmeyer [43, 46] made it explicit that
the parity of node degrees makes a huge difference in the
port-numbering model, and Yamashita and Kameda [60]
discussed factors and factorisations in this context; the un-
derlying graph-theoretic observations can be traced back to
as far as Petersen’s 1891 work [50]. Some equivalences and
separations between the classes are already known, or at least

8 Lauri Hella et al.

implicit in prior work—see, in particular, Boldi et al. [10]
and Yamashita and Kameda [62].

However, it seems that a comprehensive classification
of the weak models from the perspective of solvable graph
problems has been lacking. Our main contribution is putting
all pieces together in order to provide a complete character-
isation of the relations between the weak models and the
complexity classes associated with them.

We also advocate a new perspective for studying the
weak models—the connections with modal logic can be used
to complement the traditional graph-theoretic approaches.
In particular, bisimulation is a convenient tool that comple-
ments the closely related graph-theoretic concepts of cover-
ing graphs and fibrations.

3.4 Local Inputs

In this article we study graph problems associated with sim-
ple undirected graphs of the type (V,E). It would also be
worthwhile to study structures of the type (V,E, f), where
f : V →N is function encoding a local input f (u) associated
with each node u ∈V . The related notion of a state machine
would be the same as in Section 1.3, with the additional
property that the initial state x0(u) of a machine at a node u
would depend on the local information f (u) in addition to
the degree of u.

While we will not study the effects of local inputs, it is
worth noticing that the classification given by (1) and (2)
extends immediately to the context with local information—
in particular, a separation with unlabelled graphs implies a
separation in the more general case of labelled graphs.

As long as each node knows its own degree, local inputs
do not seem to add anything interesting to the classification
of weak models of distributed computing—a uniformly finite
amount of local information could be encoded in the topolog-
ical information of the graph. However, if we studied models
that are strictly weaker than SB (for example, model SBo

that we briefly mentioned in Remark 2), local inputs would
be necessary in order to arrive at non-trivial results.

3.5 Distributed Algorithms and Modal Logic

Modal logic (see Section 4) has, of course, been applied
previously in the context of distributed systems. For example,
in their seminal paper, Halpern and Moses [33] use modal
logic to model epistemic phenomena in distributed systems.
A distributed system S gives rise to a Kripke model (see
Section 4.1), whose set W of domain points corresponds to
the set of partial runs of S, that is, finite sequences of global
states of S. For each processor i of S, there is an accessibility
relation Ri such that (v,w) ∈ Ri if and only if v and w are

indistinguishable from the point of view of processor i. This
framework suits well for epistemic considerations.

In traditional modal approaches, the domain elements of
a Kripke model correspond to possible states of a distributed
computation process. Our perspective is a radical departure
from this approach. In our framework, a distributed system
is—essentially—a Kripke model, where the domain points
are processors and the accessibility relations are communi-
cation channels. While such an interpretation is of course
always possible, it turns out to be particularly helpful in
the study of weak models of distributed computing. With
this interpretation, for example, a local algorithm in Set∩
Broadcast corresponds to a formula of modal logic, while
a local algorithm in Multiset∩Broadcast corresponds to a
formula of graded modal logic—local algorithms are exactly
as expressive as such formulas, and the running time of an
algorithm equals the modal depth of a formula. Standard tech-
niques from the field of modal logic can be directly applied in
the study of distributed algorithms, and conversely our clas-
sification of the weak models of distributed computing can
be rephrased as a result that characterises the expressibility
of modal logics in certain classes of Kripke models.

4 Connections with Modal Logic

In this section, we show how to characterise each of the
classes SB(1), MB(1), VB(1), SV(1), MV(1), VV(1), and
VVc(1) by a corresponding modal logic, in the spirit of de-
scriptive complexity theory (see Immerman [35]). We show
that for each class there is a modal logic that is equally ex-
pressive: for any graph problem in the class there is a formula
in the modal logic that defines a solution of the graph prob-
lem; conversely, any formula in the modal logic defines a
solution of some graph problem in the class.

4.1 Logics ML, GML, MML, and GMML

Our characterisation uses basic modal logic ML, graded
modal logic GML, multimodal logic MML, and graded mul-
timodal logic GMML—see, e.g., Blackburn, de Rijke, and
Venema [9] or Blackburn, van Benthem, and Wolter [8] for
further details on modal logic.

Basic modal logic, ML, is obtained by extending propo-
sitional logic by a single (unary) modal operator 3. More
precisely, if Φ is a finite set of proposition symbols, then the
set of ML(Φ)-formulas is given by the following grammar:

ϕ := q | (ϕ ∧ϕ) | ¬ϕ | 3ϕ, where q ∈Φ .

The semantics of ML is defined on Kripke models. A
Kripke model for the set Φ of proposition symbols is a tuple

Weak Models of Distributed Computing, with Connections to Modal Logic 9

K = (W,R,τ), where W is a nonempty set of states (or possi-
ble worlds), R⊆W 2 is a binary relation on W (accessibility
relation), and τ is a valuation function τ : Φ →P(W).

The truth of an ML(Φ)-formula ϕ in a state v ∈W of a
Kripke model K = (W,R,τ) is defined recursively as follows:

K,v � q iff v ∈ τ(q), for each q ∈Φ ,

K,v � (ϕ ∧ϑ) iff K,v � ϕ and K,v � ϑ ,

K,v � ¬ϕ iff K,v 2 ϕ,

K,v �3ϕ iff K,w � ϕ for some w ∈W

such that (v,w) ∈ R.

Usually in modal logic one defines the abbreviations

(ϕ ∨ϑ) := ¬(¬ϕ ∧¬ϑ) and 2ϕ := ¬3¬ϕ.

Classical modal logic has its roots in the philosophical
analysis of the notion of possibility. In classical modal logic,
a modal formula 3ϕ is interpreted to mean that it is possible
that ϕ holds. The set W of a Kripke model K = (W,R,τ)
is a collection of possible worlds v, or possible states of
affairs. The relation R connects a possible world v to exactly
those worlds that can be considered to be—in one sense or
another—possible states of affairs, when the actual state of
affairs is in fact v. The semantics of the formula 3ϕ reflects
this idea; 3ϕ is true in v if and only if there is a possible
state of affairs w accessible from v via R such that ϕ is true
in w.

Modern systems of modal logic often have very little to
do with the original philosophical motivations of the field.
The reason is that modal logic and Kripke semantics seem
to adapt rather well to the requirements of a wide range
of different kinds of applications in computer science and
various other fields. Our use of modal logic in this article is
an example of such an adaptation.

One of the features of basic modal logic is that it is
unable to count: there is no mechanism in ML for separating
states v of Kripke models based only on the number of R-
successors of v. The most direct way to overcome this defect
is to add counting to the modalities. The syntax of graded
modal logic [24], GML, extends the syntax of ML with the
rules 3≥kϕ , where k ∈ N. The semantics of these graded
modalities 3≥k is the following:

K,v �3≥kϕ iff
∣∣{w ∈W : (v,w) ∈ R and K,w � ϕ}

∣∣ ≥ k.

Up to this point we have considered modal logics with
only one modality 3. Multimodal logic, MML, is the natural
generalisation of ML that allows an arbitrary (finite) number
of modalities. The modalities are usually written as 〈α〉,
where α ∈ I for some index set I. Given the set I and a
finite set Φ of proposition symbols, the set of MML(I,Φ)-
formulas is defined by the following grammar:

ϕ := q | (ϕ ∧ϕ) | ¬ϕ | 〈α〉ϕ, where q ∈Φ and α ∈ I.

The Kripke models corresponding to the multimodal
language MML(I,Φ) are of the form K = (W,(Rα)α∈I ,τ),
where Rα ⊆W 2 for each α ∈ I, and τ is a function τ : Φ →
P(W).

The truth definition of MML(I,Φ) is the same as the
truth definition of ML for Boolean connectives and atomic
formulas. For diamond formulas 〈α〉ϕ the semantics are
given by the condition

K,v � 〈α〉ϕ iff K,w � ϕ for some w ∈W

such that (v,w) ∈ Rα .

We can naturally extend MML by graded modalities 〈α〉≥k
for each α ∈ I and k ∈N and obtain graded multimodal logic
GMML(I,Φ).

If the index set I contains only one element α , then
MML(I,Φ) can be identified with ML(Φ) simply by re-
placing 〈α〉 with 3. Similarly, GMML({α},Φ) is identified
with GML(Φ).

Let L be a modal logic and ϕ an L(I,Φ)-formula. The
modal depth of ϕ , denoted by md(ϕ), is defined recursively
as follows:

md(q) = 0 for q ∈Φ ,

md(ϕ ∧ϑ) = max{md(ϕ),md(ϑ)},
md(¬ϕ) = md(ϕ),

md(〈α〉ϕ) = md(ϕ)+1 for α ∈ I.

Thus, md(ϕ) is the largest number of nested modalities in ϕ .
Given a modal logic L and a Kripke model K for L, each

L-formula ϕ defines a subset {v ∈W | K,v � ϕ} of the set of
states in K; this set is denoted by ‖ϕ‖K .

4.2 Bisimulation and Definability in Modal Logic

We will now define one of the most important concepts in
modal logic, bisimulation. Bisimulation was first defined in
the context of modal logic by van Benthem [7], who calls it
a p-relation. Bisimulation was also discovered independently
in a variety of other fields. See Sangiorgi [53] for the history
and development of the notion.

The objective of bisimulation is to characterise definabil-
ity in the corresponding modal logics, so that if two states w
and w′ are bisimilar they cannot be separated by any formula
of the corresponding logic. Bisimulation can be defined in a
canonical way for each of the logics ML, GML, MML, and
GMML.

Bisimulation for MML is defined as follows. Let

K =
(
W, (Rα)α∈I , τ

)
,

K′ =
(
W ′, (R′α)α∈I , τ

′)
be Kripke models for a set Φ of proposition symbols. A
nonempty relation Z ⊆W ×W ′ is a bisimulation between K
and K′ if the following conditions hold.

10 Lauri Hella et al.

(B1) If (v,v′)∈ Z, then v∈ τ(q) iff v′ ∈ τ ′(q) for all q∈Φ .
(B2) If (v,v′) ∈ Z and (v,w) ∈ Rα for some α ∈ I, then

there is a w′ ∈W ′ with (v′,w′) ∈ R′α and (w,w′) ∈ Z.
(B3) If (v,v′) ∈ Z and (v′,w′) ∈ R′α for some α ∈ I, then

there is a w ∈W with (v,w) ∈ Rα and (w,w′) ∈ Z.

If there is a bisimulation Z such that (v,v′) ∈ Z, we say that v
and v′ are bisimilar.

For the basic modal logic ML, bisimulation is defined in
the same way just by replacing the relations Rα , α ∈ I, in
conditions (B2) and (B3) with the single relation R.

In the case of the graded modal logic GML, we use the
notion of graded bisimulation: a nonempty relation Z ⊆W ×
W ′ is a graded bisimulation between K = (W,R,τ) and K′ =
(W ′,R′,τ ′) if it satisfies condition (B1) and the following
modifications of (B2) and (B3); we use the notation R(v) =
{w ∈W : (v,w) ∈ R}.

(B2∗) If (v,v′) ∈ Z and X ⊆ R(v), then there is a set X ′ ⊆
R′(v′) such that |X ′|= |X | and for each w′ ∈ X ′ there
is a w ∈ X with (w,w′) ∈ Z.

(B3∗) If (v,v′) ∈ Z and X ′ ⊆ R′(v′), then there is a set X ⊆
R(v) such that |X |= |X ′| and for each w ∈ X there is
a w′ ∈ X ′ with (w,w′) ∈ Z.

We say that v and v′ are g-bisimilar if there is a graded
bisimulation Z such that (v,v′) ∈ Z.

The definition of graded bisimulation for GMML is the
obvious generalisation of the definition above to the case of
several relations Rα instead of a single relation R.

The notion of graded bisimulation was first formulated
by de Rijke [52]. Our definition follows the formulation
of Conradie [17]. We state next the main result concerning
bisimulation. For the proof of Fact 1a, we refer to Blackburn
et al. [9]. The proof of Fact 1b can be found in Conradie [17].

Fact 1 (a) LetL be ML or MML, and let K and K′ be Kripke
models, v ∈W and v′ ∈W ′. If v and v′ are bisimilar, then for
all L-formulas ϕ

K,v � ϕ iff K′,v′ � ϕ.

(b) Let L be GML or GMML, and let K and K′ be Kripke
models, v ∈W and v′ ∈W ′. If v and v′ are g-bisimilar, then
for all L-formulas ϕ

K,v � ϕ iff K′,v′ � ϕ.

In what follows, we will develop a connection between
modal logic and weak models of distributed computing. In-
formally, the states of a Kripke model will correspond to
the nodes of a distributed system, and bisimilar states will
correspond to nodes that are unable to distinguish their neigh-
bourhoods, no matter which distributed algorithm we use.
With the help of this connection, we can then use bisimula-
tion in Section 5.3 to prove separations of problem classes.

Modal logic Distributed algorithms

Kripke model K = (W,(Rα)α∈I ,τ)
{ input graph G = (V,E)

port numbering p

states W nodes V
relations Rα , α ∈ I edges E and port numbering p

valuation τ
}

node degrees (initial state)proposition symbols q1,q2, . . .

formula ϕ algorithm A
formula ϕ is true in state v A outputs 1 in node v
modal depth of ϕ running time of A

Table 3 Correspondence between modal logic and distributed algo-
rithms.

4.3 Characterising Constant-Time Classes by Modal Logics

There is a natural correspondence between the framework
for distributed computing defined in this paper and the logics
ML, GML, MML, and GMML. For any input graph G and
port numbering p of G, the pair (G, p) can be transformed
into a Kripke model K(G, p)= (W,(Rα)α∈I ,τ) in a canonical
way. Given a local algorithm A, its execution can then be
simulated by a modal formula ϕ . The crucial idea is that the
truth condition for a diamond formula 〈α〉ψ is interpreted as
communication between the nodes:

K,v � 〈α〉ψ iff v receives the message “ψ is true”
from some u such that (v,u) ∈ Rα .

Conversely, for any modal formula ϕ , there is a local algo-
rithm A that can evaluate the truth of ϕ in the Kripke model
K(G, p).

The general idea of the correspondence between modal
logic and distributed algorithms is described in Table 3. We
will assume thatA produces a one-bit output, i.e., Y = {0,1};
other cases can be handled by defining a separate formula for
each output bit.

We start by defining the Kripke models K(G, p). There
are in fact four different versions of K(G, p), reflecting the
fact that algorithms in the lower classes do not use all the
information encoded in the port numbering. Let G = (V,E)∈
F(∆), and let p be a port numbering of G. The accessibility
relations used in the different versions of K(G, p) are the
following; see Fig. 7 for illustrations:

R(i, j) = {(u,v) ∈V ×V : p((v, j)) = (u, i)}
for each pair (i, j) ∈ [∆]× [∆].

Given ∆ , these relations together with the vertex set V contain
the same information as the pair (G, p): graph G and port
numbering p can be reconstructed from the pair(
V,(R(i, j))(i, j)∈[∆]×[∆]

)
.

Since algorithms in classes below Vector have access to a
restricted part of the information in p, we need alternative

Weak Models of Distributed Computing, with Connections to Modal Logic 11

accessibility relations with corresponding restrictions on their
information about p:

R(i,∗) =
⋃

j∈[∆]

R(i, j) for each i ∈ [∆],

R(∗, j) =
⋃

i∈[∆]

R(i, j) for each j ∈ [∆],

R(∗,∗) =
⋃

(i, j)∈[∆]×[∆]

R(i, j).

Note that R(∗,∗) = {(u,v) : {u,v} ∈ E} is the edge set E in-
terpreted as a symmetric relation.

In addition to the accessibility relations, we encode the
local information on the degrees of vertices into a valuation
τ : Φ∆ →P(V), where Φ∆ = {qi : i ∈ [∆]}. The valuation τ

is given by

τ(qi) = {v ∈V : deg(v) = i}.

The four versions of a Kripke model corresponding to
graph G and port numbering p are now defined as follows:

K+,+(G, p) = (V,(Rα)α∈I∆
+,+

,τ), where I∆
+,+ = [∆]× [∆],

K−,+(G, p) = (V,(Rα)α∈I∆
−,+

,τ), where I∆
−,+ = {∗}× [∆],

K+,−(G, p) = (V,(Rα)α∈I∆
+,−

,τ), where I∆
+,− = [∆]×{∗},

K−,−(G, p) = (V,(Rα)α∈I∆
−,−

,τ), where I∆
−,− = {(∗,∗)}.

For all a,b ∈ {−,+}, we denote the class of all Kripke
models of the form Ka,b(G, p) by Ka,b. Furthermore, we de-
note by Kc

+,+ the subclass of K+,+ consisting of the models
K+,+(G, p), where p is a consistent port numbering of G.

In order to give a precise formulation to the correspon-
dence between modal logics and the constant-time classes
of graph problems, we define the concept of modal formulas
solving graph problems. Without loss of generality, we con-
sider here only problems Π such that the solutions S ∈Π(G)

are functions V →{0,1}, or equivalently, subsets of V . This
is a natural restriction, since a modal formula ψ defines a
subset

‖ψ‖Ka,b(G,p) := {v ∈V | Ka,b(G, p),v � ψ}

of the vertex set V . Other cases can be handled by using
tuples of formulas.

Let a,b∈{−,+}, and letΨ =(ψ1,ψ2, . . .) be a sequence
of modal formulas such that ψ∆ is in the signature (I∆

a,b,Φ∆)

for each ∆ ∈ N. Then Ψ defines a solution for a graph prob-
lem Π on the class Ka,b if the following condition holds:

– For all ∆ ∈ N, all G ∈ F(∆), and all port numberings p
of G, the subset ‖ψ∆‖Ka,b(G,p) defined by the formula ψ∆

in the model Ka,b(G, p) is in the set Π(G).

1

2

3
1

2

3

2

11
2

2
1
2

1

1
1

G:

p:

R(2,1):

R(2,*):

R(*,1):

R(*,*):

Fig. 7 Relations R(i, j)—note the directions of the arrows.

12 Lauri Hella et al.

Furthermore, the sequence Ψ defines a solution for Π on the
class Kc

+,+, if the condition above with a = b =+ holds for
all consistent port numberings p.

Note that any sequence Ψ = (ψ1,ψ2, . . .) of modal for-
mulas as above gives rise to a canonical graph problem ΠΨ

that it defines a solution for: for each graph G, the solution
set ΠΨ (G) simply consists of the sets ‖ψ∆‖Ka,b(G,p) where
G∈F(∆) and p ranges over the (consistent) port numberings
of G.

Let L be a modal logic, let a,b ∈ {−,+}, and let C be a
class of graph problems. We say that L is contained in C on
Ka,b, in symbols L ≤C on Ka,b, if the following condition
holds:

– If Ψ = (ψ1,ψ2, . . .) is a sequence of formulas such that
ψ∆ ∈ L(I∆

a,b,Φ∆) for all ∆ ∈ N, then ΠΨ ∈C.

Furthermore, we say that L simulates C on Ka,b, in symbols
C ≤ L on Ka,b, if the following condition holds:

– For every graph problem Π ∈C there is a sequence Ψ =

(ψ1,ψ2, . . .) of formulas such that ψ∆ ∈ L(I∆
a,b,Φ∆) for

all ∆ ∈ N, which defines a solution for Π on Ka,b.

Finally, we say that L captures C on Ka,b if both L ≤C and
C ≤ L on Ka,b.

The notions of L being contained in C on Kc
+,+, L sim-

ulating C on Kc
+,+, and L capturing C on Kc

+,+ are defined
similarly with the obvious restriction to consistent port num-
berings.

The main result of this section is that the constant-time
version of each of the classes VVc, VV, MV, SV, VB, MB,
and SB is captured by one of the modal logics MML, ML,
GMML, and GML on an appropriate class Ka,b.

Theorem 1 (a) MML captures VVc(1) on Kc
+,+.

(b) MML captures VV(1) on K+,+.
(c) GMML captures MV(1) on K−,+.
(d) MML captures SV(1) on K−,+.
(e) MML captures VB(1) on K+,−.
(f) GML captures MB(1) on K−,−.
(g) ML captures SB(1) on K−,−.

Proof of Theorem 1: Overview. Note first that (a) follows
directly from (b) by restricting to consistent port numberings.
Furthermore, the only difference between GMML and MML
is the ability to count the number of neighbours satisfying a
formula, which corresponds in a natural way to the difference
between algorithms in Multiset and Set. Hence, we omit
the proof of (d), as it is obtained from the proof of (c) by
minor modifications. Similarly, the proof of (g) is a minor
modification of the proof of (f), so we omit it, too.

Thus, we are left with the task of proving claims (b), (c),
(e) and (f). The structure of the proofs of all these claims
is the same—there are differences only in technical details.
Hence, we divide the proof in four parts as follows.

1. We prove the first half of (b): MML≤ VV(1) on K+,+.
2. We describe the changes in part 1 needed for proving the

first halves of (c), (e) and (f).
3. We prove the second half of (b): VV(1)≤MML onK+,+.
4. We describe the changes in part 3 needed for proving the

second halves of (c), (e) and (f).

Proof of Theorem 1, Part 1. Assume that Ψ = (ψ1,ψ2, . . .)

is a sequence of formulas with ψ∆ ∈ MML(I∆
+,+,Φ∆) for

each ∆ ∈ N. We give for each ∆ ∈ N a local algorithm A∆ ∈
Vector that simulates the recursive evaluation of the truth of
ψ∆ on a Kripke model K+,+(G, p).

Let Σ be the set of all subformulas of ψ∆ , and let D j,
j ∈ [∆], be the subset of Σ consisting of subformulas η such
that 〈α〉η ∈ Σ , where α = (i, j) for some i ∈ [∆]. The set
of stopping states, intermediate states, and messages of the
algorithm A∆ (see Section 1.1) are defined as follows:

Y := {0,1},
Z :=

{
f : f is a function Σ →{0,1,U}

}
,

M :=
⋃

j∈[∆]

{
h : h is a function D j→{0,1,U}×{ j}

}
∪{m0}.

The idea behind these choices is that before stopping, the
state xt(v) of the computation of A∆ on a node v of an input
(G, p) encodes the truth value of each subformula of ψ∆ with
modal depth at most t; for subformulas with modal depth
greater than t, the state xt(v) gives the value U (undefined).
In other words, our aim is to make sure that at each step t
of the computation, xt(v) = f , where f ∈ Z is the function
defined by

f (η) =

0, if md(η)≤ t and K+,+(G, p),v 2 η

1, if md(η)≤ t and K+,+(G, p),v � η

U, if md(η)> t

for each η ∈ Σ . First, we define the function z0 : [∆]→Y ∪Z
that gives the initial state x0(v) = z0(deg(v)) of each node v.
For each i ∈ [∆], we set z0(i) = g, where g is the function
defined recursively as follows:

g(η) = 1 for each η = qi ∈ Σ ,

g(η) = 0 for each η = q j ∈ Σ , j ∈ [∆]\{i},

g(η) =

0, if 0 ∈ {g(ϑ),g(γ)} ⊆ {0,1}
1, if {g(ϑ),g(γ)}= {1}
U, if U ∈ {g(ϑ),g(γ)}

for each η = (ϑ ∧ γ) ∈ Σ ,

Weak Models of Distributed Computing, with Connections to Modal Logic 13

g(η) =

0, if g(ϑ) = 1
1, if g(ϑ) = 0
U, if g(ϑ) =U

for each η = ¬ϑ ∈ Σ ,

g(η) =U for each η = 〈α〉ϑ ∈ Σ .

If a node v of the input graph G is in the state xt(v) = f ∈
Z at time step t, then the message µ(f , j) it sends to its port
j ∈ [deg(v)] at step t +1 is obtained from the restriction of f
to the set D j by adding j as a marker: that is, µ(f , j) is the
function h : D j→{0,1,U}×{ j} such that h(η) = (f (η), j)
for all η ∈ D j.

Finally, the state transition function δ of A∆ is described
as follows. Assume that the state of a node v at time t is
xt(v) = f ∈ Z, and the vector of messages it receives at time
t +1 from the ports is at+1(v) = (h1, . . . ,h∆). If f (ψ∆) =U ,
then xt+1(v) is the function g ∈ Z defined as follows:

1. For each η ∈ Σ with f (η) 6=U , we set g(η) = f (η).
2. For each η ∈ Σ with f (η) = U , we define g(η) by the

following recursion:

g(η) =

0, if 0 ∈ {g(ϑ),g(γ)} ⊆ {0,1}
1, if {g(ϑ),g(γ)}= {1}
U, if U ∈ {g(ϑ),g(γ)}

(δ∧)

for each η = (ϑ ∧ γ) ∈ Σ ,

g(η) =

0, if g(ϑ) = 1
1, if g(ϑ) = 0
U, if g(ϑ) =U

(δ¬)

for each η = ¬ϑ ∈ Σ ,

g(η) =

0, if f (ϑ) 6=U and hi(ϑ) 6= (1, j)

1, if f (ϑ) 6=U and hi(ϑ) = (1, j)

U, if f (ϑ) =U

(δ3)

for each η = 〈(i, j)〉ϑ ∈ Σ .

For convenience, we interpret m0 as a function with
m0(ϑ) = (0,1) for each subformula ϑ .

If f (ψ∆) 6=U , we let xt+1(v) = f (ψ∆) ∈ Y .
It is now straightforward to prove by induction on modal

depth that the following holds for any input graph G ∈F(∆),
port numbering p of G, and node v of G:

– If η ∈ Σ , md(η)≤ t ≤md(ψ∆), and xt(v) = f ∈ Z, then
f (η) ∈ {0,1} and f (η) = 1 iff K+,+(G, p),v � η .

Thus, if t = md(ψ∆) and xt(v) = f , then f (ψ∆) reveals the
truth value of ψ∆ on v. This means that the computation of
A∆ stops at step t +1, and the output xt+1(v) on node v is 1
if and only if K+,+(G, p),v � ψ∆ . In other words, the running

time of A∆ is the constant md(ψ∆)+1, and its output on the
input (G, p) is the set ‖ψ∆‖K+,+(G,p). Hence, the sequence
A = (A1,A2, . . .) of algorithms solves the graph problem
ΠΨ , and we conclude that ΠΨ ∈ VV(1).

Proof of Theorem 1, Part 2. We will now consider the proofs
of the first halves of (c), (e) and (f). In each of these cases,
we are given a formula ψ∆ in the corresponding modal logic,
and we define an algorithmA∆ which simulates the recursive
truth definition of ψ∆ . The definitions of the state sets Y and
Z, as well as the definition of the initial state function z0
remain unchanged in all cases.

However, since the modal operators occurring in sub-
formulas of Ψ∆ are different in each of the cases, the sets
D j, j ∈ [∆] have to be redefined accordingly. Moreover, in
cases (e) and (f), we have to remove the markers j from
the messages, since the algorithm A∆ should be in the class
Broadcast. Thus, the message set M and the message con-
structing function µ have to be redefined for the proof of (e)
and (f). Finally, in all cases, the clause (δ3) in the recursive
definition of the next state xt+1(v) has to be modified accord-
ing to the semantics of the corresponding modal operators.
Below, we list these modifications for each case separately.

(c) For each j ∈ [∆], set D j is redefined as

D j := {η : 〈(∗, j)〉≥kη ∈ Σ for some k ∈ N}.

Clause (δ3) is replaced with

g(η) =

0, if f (ϑ) 6=U and |H|< k

1, if f (ϑ) 6=U and |H| ≥ k

U, if f (ϑ) =U

(δ ′3)

for each η = 〈(∗, j)〉≥kϑ ∈ Σ . Here

H = {i ∈ [∆] : hi(ϑ) = (1, j)}.

(e) The definition of (D j) j∈[∆] is replaced with

D := {η : 〈(i,∗)〉η ∈ Σ}.

Set M is redefined as

M := {h : h is a function D→{0,1,U}}∪{m0}.

Function µ(f , j) is redefined to be the restriction of f
to the set D. Clause (δ3) is replaced with

g(η) =

0, if f (ϑ) 6=U and hi(ϑ) = 0
1, if f (ϑ) 6=U and hi(ϑ) = 1
U, if f (ϑ) =U

(δ ′′3)

for each η = 〈(i,∗)〉ϑ ∈ Σ . Here we interpret m0 as a
function with m0(ϑ) = 0 for all ϑ .

14 Lauri Hella et al.

(f) The definition of (D j) j∈[∆] is replaced with

D′ := {η : 〈(∗,∗)〉≥kη ∈ Σ for some k ∈ N}.

Set M is redefined as

M := {h : h is a function D′→{0,1,U}}∪{m0}.

Function µ(f , j) is redefined to be the restriction of f
to the set D′. Clause (δ3) is replaced with

g(η) =

0, if f (ϑ) 6=U and |H ′|< k

1, if f (ϑ) 6=U and |H ′| ≥ k

U, if f (ϑ) =U

(δ ′′′3)

for each η = 〈(∗,∗)〉≥kϑ ∈ Σ . Here

H ′ = {i ∈ [∆] : hi(ϑ) = 1}.

Again, we interpret m0 as a function with m0(ϑ) = 0
for all ϑ .

It is now straightforward to check that in all the cases
A∆ computes the truth value of ψ∆ correctly in md(ψ∆)+1
steps, whence A = (A1,A2, . . .) solves ΠΨ in constant time.
Furthermore, it is easy to see that in case (c), A∆ is in the
class Multiset, whence Πψ is in MV(1). Similarly, in case
(e), A∆ is in Broadcast, and in case (f) A∆ is in Multiset∩
Broadcast, as desired.

Proof of Theorem 1, Part 3. Assume now that Π is a graph
problem in VV(1). Thus, there is a sequence

A = (A1,A2, . . .)

of local algorithms in Vector such that for every G ∈ F(∆)

and port numbering p of G, the output of A∆ on (G, p) is in
Π(G). We will encode information on the states of compu-
tation and messages sent during the execution of A∆ on an
input (G, p) by suitable formulas of MML.

Using the definitions of Section 1.1, let

A∆ = (Y,Z,z0,M,m0,µ,δ),

and let T be the running time ofA∆ . We will build a formula
ψ∆ ∈ MML(I∆

+,+,Φ∆) simulating A∆ from the following
subformulas:

– ϕz,t for z ∈ Y ∪Z and t ∈ [T],
– ϑm, j,t for m ∈M, j ∈ [∆] and t ∈ [T],
– χm,i, j,t for m ∈M, i, j ∈ [∆] and t ∈ [T].

The intended meaning of these subformulas are given in Ta-
ble 4, and their recursive definitions are indicated in Table 5.

Note that the set Z of intermediate states, as well as the set
M of messages, may be infinite, whence there are potentially
infinitely many formulas of the form ϕz,t , ϑm, j,t and χm,i, j,t .

However, it is easy to prove by induction on t that there are
only finitely many different formulas in the families

Ψt = {ϕz,t : z ∈ Y ∪Z},
Θt = {ϑm, j,t : m ∈M and j ∈ [∆]},
Ξt = {χm,i, j,t : m ∈M and i, j ∈ [∆]}.

Indeed, for each z∈Y ∪Z, subformula ϕz,0 is a disjunction of
the form

∨
i∈J qi for some J ⊆ [∆]; here

∨
i∈ /0 qi is understood

as some fixed contradictory formula. Furthermore, assuming
Ψt is finite, there are only finitely many different Boolean
combinations of formulas in Ψt , whence Θt+1 is finite. By
the same argument, if Θt+1 is finite, then so is Ξt+1, and if
Ψt and Ξt+1 are finite, then so is Ψt+1.

Clearly the formulas ϕz,t , ϑm, j,t and χm,i, j,t can be defined
in such a way that each of them has its intended meaning.
In particular, given an input (G, p) to the algorithm A∆ , the
output on a node v is 1 if and only if v ∈ ‖ϕ1,T‖K+,+(G,p).
Thus, defining ψ∆ := ϕ1,T we get ‖ψ∆‖K+,+(G,p) ∈ Π(G)
for all G ∈ F(∆) and all port numberings p of G. Hence
we conclude that the sequence Ψ = (ψ1,ψ2, . . .) defines a
solution to Π .

As an additional remark, we note that the modal depth
of each ϕz,t is t, as an easy induction shows. In particular,
md(ψ∆) is equal to the running time T of A∆ .

Proof of Theorem 1, Part 4. To complete the proof, we will
now describe the changes needed in the technical details for
proving the second halves of claims (c), (e) and (f). Thus,
assume that Π is a graph problem, and A = (A1,A2, . . .) is a
local algorithm which solves Π and is in the class Multiset,
Broadcast or Multiset∩Broadcast, respectively. The corre-
sponding modal formula ψ∆ is constructed from subformulas
in the same way as in (3) with appropriate modifications in
technical details.

Since algorithms in Multiset cannot distinguish between
the port numbers of incoming messages, the subscript i in the
formulas χm,i, j,t has to be removed in cases of (c) and (f). On
the other hand, the algorithms can count the multiplicities
of incoming messages, whence a new parameter k ∈ [∆]

for these formulas is needed. Furthermore, in cases (e) and
(f), the subscript j has to be removed from the formulas
ϑm, j,t and χm,i, j,t , as algorithms in the class Broadcast cannot
send different messages through different ports. Below, we
summarise the modifications in each case separately.

(c) The formulas χm,i, j,t are replaced with χk
m, j,t , k ∈ [∆].

The recursive definition of these formulas is as follows:

χ
k
m, j,t+1 := 〈(∗, j)〉≥kϑm, j,t+1.

The formulas ϑm, j,t+1 and ϕz,t+1 are defined as in Ta-
ble 5, with χk

m, j,t in place of χm,i, j,t .

Weak Models of Distributed Computing, with Connections to Modal Logic 15

Subformulas of ψ∆ Algorithm A∆

ϕz,t is true in world v local state xt(v) is z
ϑm, j,t is true in world v node v sends message m to port j in round t
χm,i, j,t is true in world v node v receives message m from port i in round t; the message was sent by an adjacent node to port j

Table 4 The intended meaning of the subformulas.

Recursive definition of the formulas Execution of A∆

ϕz,0: Boolean combination of qi ∈Φ∆ initialisation: x0(u) = z0(deg(u))

ϑm, j,t+1: Boolean combination of ϕz,t , z ∈ Y ∪Z local computation: m = µ(xt(v), j)

χm,i, j,t+1 := 〈α〉ϑm, j,t+1 with α = (i, j) communication: construct at+1(v)

ϕz,t+1: Boolean combination of ϕx,t , x ∈ Y ∪Z, and χm,i, j,t+1, m ∈M, i, j ∈ [∆] local computation: xt+1(v) = δ (xt(v),at+1(v))

Table 5 Constructing the formula ψ∆ , given an algorithm A∆ .

(e) The formulas ϑm, j,t and χm,i, j,t are replaced with ϑm,t ,
and χm,i,t , respectively. The recursive definition of the
latter is as follows:

χm,i,t+1 := 〈(i,∗)〉ϑm,t+1.

The formulas ϑm,t+1 are defined as Boolean combina-
tions of ϕz,t , and the formulas ϕz,t+1 are defined as in
Table 5.

(f) The formulas ϑm, j,t and χm,i, j,t are replaced with ϑm,t ,
and χk

m,t , respectively. The recursive definition of the
latter is as follows:

χ
k
m,t+1 := 〈(∗,∗)〉≥kϑm,t+1.

The formulas ϑm,t+1 are defined as Boolean combina-
tions of ϕz,t , and the formulas ϕz,t+1 are defined as in
Table 5.

As in the proof of claim (b), it is easy to see that in each
case the subformulas used in the construction of ψ∆ := ϕ1,T
can be defined in such a way that they have their intended
meanings. Thus, for every graph G ∈ F(∆) and every port
numbering p of G, the output of A∆ in (G, p) equals

‖ψ∆‖Ka,b(G,p),

where a,b ∈ {−,+} is selected appropriately for each case.
Hence, we conclude that the sequence Ψ = (ψ1,ψ2, . . .) de-
fines a solution to Π .

This concludes the proof of Theorem 1. ut

There is a slight asymmetry in the proof of Theorem 1: in
the first half of the proof the running time of the constructed
algorithm A∆ is md(ψ∆)+ 1, while in the second half the
modal depth of the formula ψ∆ constructed is exactly the
running time of the given algorithm A∆ . However, this mis-
match can be rectified by modifying the proof of the first

part. We did not write this modified proof simply to avoid
unnecessary technicalities.

Theorem 1 gives us a tool for proving that a given graph
problem Π is not in one of the classes considered in this
paper. The idea is to use bisimulation for showing that the
corresponding modal logic cannot define a solution for Π . At
first it may appear that this tool can be applied only for the
constant-time versions of the classes, as the logical charac-
terisations in Theorem 1 are valid only in the constant-time
case. However, in the following corollary we show that the
method based on bisimulation can be used also in the general
case. In principle, this result is valid for all seven classes,
but we formulate it here only for VV, VB and SB; these are
the cases we use later in Section 5.3. We remind the reader
that throughout this section we focus on the case of binary
outputs, i.e., Y = {0,1}, in which case we can interpret a
solution S ∈Π as a subset S⊆V .

Corollary 1 Let G = (V,E)∈F(∆) be a graph, X ⊆V , and
let Π be a graph problem such that for every S∈Π(G), there
are u,v ∈ X with u ∈ S and v /∈ S.

(a) If there is a port numbering p of G such that all nodes in
X are bisimilar in the model K+,+(G, p), then Π is not
in the class VV.

(b) If there is a port numbering p of G such that all nodes in
X are bisimilar in the model K+,−(G, p), then Π is not
in the class VB.

(c) If there is a port numbering p of G such that all nodes in
X are bisimilar in the model K−,−(G, p), then Π is not
in the class SB.

Proof We prove only claim (a); the other claims can be
proved in the same way. Let A = (A1,A2, . . .) be any al-
gorithm in Vector, and let ∆ be the maximum degree of G.

The key observation is that there is a local algorithm
B∆ ∈ Vector such that B∆ and A∆ produce the same output
S in (G, p). We can obtain such a local algorithm B∆ from

16 Lauri Hella et al.

algorithmA∆ by adding a counter that stops the computation
after T steps, where T is the running time of A∆ on (G, p).

As we have a local algorithm B∆ that produces output
S in (G, p), by Theorem 1b there is also a formula ψ ∈
MML(I∆

+,+) such that

S = ‖ψ‖K+,+(G,p).

By assumption, all nodes in X are bisimilar in the model
K+,+(G, p). By Fact 1, there can be no u,v ∈ X such that
u ∈ S and v /∈ S. Hence we have S /∈Π(G), and we conclude
that A cannot solve Π . ut

5 Relations between the Classes

Now we are ready to prove relations (1) and (2) that we gave
in Section 2.

5.1 Equality MV = SV

Theorem 2 is the most important technical contribution of
this work. Informally, it shows that outgoing port numbers
necessarily break symmetry even if we do not have incoming
port numbers—provided that we are not too short-sighted.

Theorem 2 Let Π be a graph problem and let T : N×N→
N. Assume that there is an algorithm A∈Multiset that solves
Π in time T . Then there is an algorithm B ∈ Set that solves
Π in time T +O(∆).

To prove Theorem 2, we define the following local al-
gorithm C∆ ∈ Set. Each node v constructs two sequences,
βt(v) and Bt(v) for t = 0,1, . . . ,2∆ . Before the first round,
each node v sets β0(v) = /0 and B0(v) = /0. Then in round
t = 1,2, . . . ,2∆ , each node v does the following:

1. Set βt(v) = (βt−1(v),Bt−1(v)).
2. For each port i, send (βt(v),deg(v), i) to port i.
3. Let Bt(v) be the set of all messages received by v.

Let G = (V,E) ∈ F(∆), and let p be a port numbering of
graph G. We will analyse the execution of C∆ on (G, p). If
p((v, i)) = (u, j), we define that π(v,u) = i. That is, π(v,u)
is the outgoing port number in v that is connected to u. Let

mt(u,v) =
(
βt(u), deg(u), π(u,v)

)
denote the message that node u sends to node v in round t; it
follows that mt(u,v) ∈ Bt(v) for all {u,v} ∈ E.

We begin with a following technical lemma. To pinpoint
the key notion, let us call u and w a pair of indistinguishable
neighbours of v in round t, if they are distinct neighbours
of v such that

βt(u) = βt(w), deg(u) = deg(w), and π(u,v) = π(w,v).

This is the same as saying that the node v receives the same
message from u and w in round t. Let us say that u and w are
a pair of indistinguishable neighbours of order k if further it
holds that v has k distinct neighbours v1,v2, . . . ,vk such that

βt(u) = βt(w) = βt(vi) for all i = 1,2, . . . ,k.

Here, u or w may belong to the set {v1,v2, . . . ,vk}. Note,
however, that we do not require each pair (vi,v j) to be a pair
of indistinguishables.

Lemma 1 Suppose that u and w are a pair of indistinguish-
able neighbours of v of order k in round t ≥ 4. Then u and w
are a pair of indistinguishable neighbours of v of order k+1
in round t−2.

Proof From βt(u) = βt(w) it follows that βt−2(u) = βt−2(w).
This implies mt−2(u,v) = mt−2(w,v).

For all i = 1,2, . . . ,k, node vi receives the message

mt−1(v,vi) =
(
βt−1(v), deg(v), π(v,vi)

)
from v in round t − 1. By assumption, we have βt(vi) =

βt(v j) for all i and j, which implies Bt−1(vi) = Bt−1(v j).
Now mt−1(v,vi)∈Bt−1(vi) implies mt−1(v,v j)∈Bt−1(vi) for
all i and j.

In any port numbering, we have π(v,vi) 6= π(v,v j) for i 6=
j. Therefore mt−1(v,vi) 6= mt−1(v,v j), and Bt−1(v1) contains
k distinct messages. That is, node v1 has k distinct neighbours,
u1,u2, . . . ,uk, such that(

βt−1(ui), deg(ui), π(ui,v1)
)
= mt−1(ui,v1) = mt−1(v,vi)

=
(
βt−1(v), deg(v), π(v,vi)

)
.

In particular, βt−1(ui) = βt−1(v) for all i.
Now let us investigate the messages that the nodes ui

receive in round t−2. We have

mt−2(v1,ui) =
(
βt−2(v1), deg(v1), π(v1,ui)

)
.

However, βt−1(ui) = βt−1(v) implies Bt−2(ui) = Bt−2(v) for
all i. In particular,

mt−2(v1,ui) ∈ Bt−2(v)

for all i. Now π(v1,ui) 6= π(v1,u j) implies mt−2(v1,ui) 6=
mt−2(v1,u j) for all i 6= j.

To summarise, v receives the following messages in round
t−2: k distinct messages,

mt−2(v1,ui) =
(
βt−2(v1), deg(v1), π(v1,ui)

)
for i = 1,2, . . . ,k, and two identical messages,

mt−2(u,v) = mt−2(w,v) =
(
βt−2(u), deg(u), π(u,v)

)
.

Moreover, βt−2(v1) = βt−2(u). Hence v receives at least k+
1 messages in round t − 2, each of the form (βt−2(u), ·, ·).
Therefore v has at least k + 1 distinct neighbours v′i with
βt−2(u) = βt−2(v′i). ut

Weak Models of Distributed Computing, with Connections to Modal Logic 17

Lemma 2 If a node v has two indistinguishable neighbours
u and w of order k in round 2t, then v has at least t + k−1
neighbours. Consequently, no node has a pair of indistin-
guishable neighbours in round 2∆ .

Proof The proof of the first claim is by induction on t. The
base case t = 1 is trivial. For the inductive step we can apply
Lemma 1.

For the consequence, we observe that if u and w were a
pair of indistinguishable neighbours of v, then the first claim
would imply that deg(v)≥ ∆ +1, which is a contradiction,
as the maximum degree of G is at most ∆ . ut

To summarise: m2∆ (u,v) 6= m2∆ (w,v) whenever u and w
are two distinct neighbours of v in G. In particular,(
β2∆ (u), deg(u), π(u,v)

)
6=
(
β2∆ (w), deg(w), π(w,v)

)
.

Once we have finished running C∆ , which takes O(∆)

time, we can simulate the execution of A∆ ∈Multiset with
an algorithm B∆ ∈ Set as follows: if a node u in the execution
of A∆ sends the message a to port i, algorithm B∆ sends the
message(
β2∆ (u),deg(u), i, a

)
to port i. Now all messages received by a node are distinct.
Hence given the set of messages received by a node v in B∆ ,
we can reconstruct the multiset of messages received by v
in A∆ . This concludes the proof of Theorem 2.

Corollary 2 We have MV = SV and MV(1) = SV(1).

Proof Immediate from Theorem 2. ut

Remark 3 With minor modifications, the proof of Theorem 2
would also imply VV =MV = SV. However, as we will see
next, there is also a more direct way to prove VV=MV. The
proof in the following section avoids the additive overhead
in running time (but the overhead in message size may be
much larger).

5.2 Equalities VB=MB and VV =MV

The following theorem is implicit in prior work [5, Section 5];
we give a bit more detailed version for the general case here.
The basic idea is that algorithm B augments each message
with the full communication history, and orders the incoming
messages lexicographically by the communication histories—
the end result is equal to the execution of algorithm A in the
same graph G for a very specific choice of incoming port
numbers.

Theorem 3 Let Π be a graph problem and let T : N×N→
N. Assume that there is an algorithm A ∈ Vector that solves
Π in time T . Then there is an algorithm B ∈Multiset that
solves Π in time T .

Proof Let A = (A1,A2, . . .) ∈ Vector be an algorithm, and
let G ∈ F(∆) be a graph of maximum degree at most ∆ .
Consider a port numbering p of G, and the execution of A∆

on (G, p). For each port (u, i) ∈ P(G), let

βt(u, i) = (a1(u, i),a2(u, i), . . . ,at(u, i))

be the full history of messages that node u received from
port i in rounds 1,2, . . . , t. Let < be the lexicographical order
of such vectors, that is, βt(u, i)< βt(v, j) if there is a time `

such that a`(u, i) <M a`(v, j) and ak(u, i) = ak(v, j) for k =

1,2, . . . , `−1. Here <M is a fixed order of the message set M
of A∆ .

We say that p is compatible with the message history up
to time t if βt(u, i)≤ βt(u, j) for all nodes u ∈V and all i < j.
Clearly, if p is compatible with the message history up to
time t, it is also compatible with the message history up to
time t−1.

Now fix any port numbering p0 of G. LetP0 be the family
of all port numberings p of G such that for each port (u, i) ∈
P(G) there are v, j, and k such that p((u, i)) = (v, j) and
p0((u, i)) = (v,k). Put otherwise, any p ∈ P0 is equivalent to
p0 from the perspective of a Multiset algorithm. We make
the following observations:

1. P0 is non-empty, and each p ∈ P0 is compatible with the
message history up to time 0.

2. State vector x0 at time 0 does not depend on the choice
of p ∈ P0.

3. The message sent by a node v to port j in round 1 does
not depend on the choice of p ∈ P0.

4. There is at least one p ∈ P0 that is compatible with the
message history up to time 1.

Now let Pt ⊆Pt−1 consist of all port numberings p ∈ Pt−1
that are compatible with the message history up to time t. By
induction, we have:

1. Pt is non-empty, and each p ∈ Pt is compatible with the
message history up to time t.

2. The vector at(u) of messages received by u in round t
does not depend on the choice of p ∈ Pt . State vector xt
at time t does not depend on the choice of p ∈ Pt .

3. The message sent by a node v to port j in round t + 1
does not depend on the choice of p ∈ Pt .

4. There is at least one p ∈ Pt that is compatible with the
message history up to time t +1.

Let T = T (∆ , |V |). In particular, A∆ stops in time T in
(G, p) for any p ∈ PT . Intuitively, a port numbering p ∈ PT
is constructed as follows: we have copied the outgoing port
numbers from a given port numbering p0, and we have ad-
justed the incoming port numbers so that p becomes compat-
ible with the message history up to time T . This choice of
incoming port numbers is particularly convenient from the
perspective of the Multiset model: βt(u, i)< βt(u, j) implies

18 Lauri Hella et al.

i < j, and βt(u, i) = βt(u, j) implies at(u, i) = at(u, j). That
is, if we know the multiset

multiset(βt(u,1),βt(u,2), . . . ,βt(u,∆)),

we can reconstruct the vector at(u).
We design an algorithm B∆ ∈Multiset with the follow-

ing property: the execution of B∆ on (G, p0) simulates the
execution of A∆ on (G, p), where p ∈ PT . Note that the out-
put of A∆ does not depend on the choice of p ∈ PT . As the
output of A∆ is in Π(G) for any port numbering of G, it
follows that the output of B∆ is also in Π(G).

The simulation works as follows. For each port (v, j) ∈
P(G), algorithm B∆ keeps track of all messages sent by node
v to port j in A∆ . Each outgoing message is augmented
with the full message history. Hence in each round t, a node
u can reconstruct the unique vector at(u) that matches the
execution of A∆ on (G, p) for any p ∈ Pt . ut

Theorem 4 Let Π be a graph problem. Let T : N×N→ N.
Assume that there is an algorithm A ∈ Broadcast that solves
Π in time T . Then there is an algorithm B ∈ Multiset∩
Broadcast that solves Π in time T .

Proof This is similar to the proof of Theorem 3. In the simu-
lation, each node keeps track of the history of broadcasts. ut

Corollary 3 We have VB = MB, VB(1) = MB(1), VV =

MV, and VV(1) =MV(1).

Proof Follows from Theorems 3 and 4. ut

Remark 4 Boldi et al. [10] and Yamashita and Kameda [62]
already give simulation results that, in essence, imply VB=

MB and VV =MV (albeit for a slightly different model of
computation). However, in prior work, the simulation over-
head is linear in the number of nodes; in particular, it does
not imply VB(1) =MB(1) or VV(1) =MV(1).

5.3 Separating the Classes

Trivially, SB ⊆ MB ⊆ MV and SB(1) ⊆ MB(1) ⊆ MV(1).
Together with Corollaries 2 and 3 these imply

SB⊆MB= VB⊆ SV =MV = VV,

SB(1)⊆MB(1) = VB(1)⊆ SV(1) =MV(1) = VV(1).

Now we proceed to show that the subset relations are proper.
We only need to come up with a graph problem that separates
a pair of classes—here the connections to modal logic and
bisimulation are a particularly helpful tool. Many of the sepa-
ration results are already known by prior work (in particular,
see Yamashita and Kameda [62]), but we give the proofs here
to demonstrate the use of bisimulation arguments.

For the case of VB 6= SV, the separation is easy: we can
consider the problem of breaking symmetry in a star graph.

Theorem 5 There is a graph problem Π such that Π ∈
SV(1) and Π /∈ VB.

Proof An appropriate choice of Π is the (artificial) prob-
lem of selecting a leaf node in a star graph. More formally,
we have the set of outputs Y = {0,1}. We define Π(G) as
follows, depending on G:

1. G = (V,E) is a k-star for a k > 1. That is,

V = {c,v1,v2, . . . ,vk},
E = {{c,vi} : i = 1,2, . . . ,k}.

Then we have S∈Π(G) if S : V →Y , S(c) = 0, and there
is a j such that S(v j) = 1 and S(vi) = 0 for all i 6= j.

2. G= (V,E) is not a star. Then we do not restrict the output,
i.e., S ∈Π(G) for any function S : V → Y .

It is easy to design a local algorithm A ∈ Set that solves
problem Π : First, all nodes send message i to port i for each i;
then a node outputs 1 if it has degree 1 and if it received the
set of messages {1}. Thus, Π is in SV(1).

We use Corollary 1b to prove that Π is not in VB. Let
G = (V,E) be a k-star, and let X ⊆V be the set of leaf nodes
of G. Then Π and X satisfy the assumption in Corollary 1.
Furthermore, it is easy to see that given any port number-
ing p of graph G, all nodes in X are bisimilar in the model
K+,−(G, p). ut

Corollary 4 We have VB 6= SV and VB(1) 6= SV(1).

Proof Follows from Theorem 5. ut

To show that SB 6=MB, we can consider, for example,
the problem of identifying nodes that have an odd number of
neighbours with odd degrees.

Theorem 6 There is a graph problem Π such that Π ∈
MB(1) and Π /∈ SB.

Proof We define Π as follows. Let G = (V,E) and S : V →
{0,1}. We have S ∈ Π(G) if the following holds: S(v) = 1
iff v is a node with an odd number of neighbours of an odd
degree.

The problem is trivially in MB(1): first each node broad-
casts the parity of its degree, and then a node outputs 1 if it
received an odd number of messages that indicate the odd
parity.

To see that the problem is not in SB, it is sufficient to ar-
gue that the white nodes in the following graphs are bisimilar,
yet they are supposed to produce different outputs.

Weak Models of Distributed Computing, with Connections to Modal Logic 19

More precisely, we can partition the nodes in five equivalence
classes (indicated with the shading and shapes in the above
illustration), and the nodes in the same equivalence class
are bisimilar in the Kripke model K−,−(G, p); recall that the
model is independent of the choice of the port numbering p.
Thus, we can apply Corollary 1c with X consisting of the two
white nodes. ut

Corollary 5 We have SB 6=MB and SB(1) 6=MB(1).

Proof Follows from Theorem 6. ut

Finally, to separate VV and VVc, we make use of the
fact that there are graphs G such that some inconsistent port
numbering of G is totally symmetric, while all consistent
port numberings of G necessarily break symmetry between
nodes.

We start by proving that any regular graph has a totally
symmetric port numbering. Recall that a graph G is k-regular
if deg(v) = k for every node v of G. Furthermore, G is regular
if it is k-regular for some k ∈ N. Recall also that a 1-factor
(or perfect matching) of a graph G = (V,E) is a set F ⊆ E of
edges such that every node v ∈V has degree 1 in the graph
(V,F).

Lemma 3 If G is a regular graph, then there is a port num-
bering p of G such that all nodes of G are bisimilar in the
model K+,+(G, p).

Proof Assume that G = (V,E) is k-regular. Let Vs = V ×
{s} for s ∈ {1,2}, and let E∗ = {{(u,1),(v,2)} : {u,v} ∈
E}. Then G∗ = (V1 ∪V2,E∗) is a k-regular bipartite graph;
see Fig. 8. It is a well-known corollary of Hall’s marriage
theorem [21, Section 2.1] that the edge set of any such graph
is the union of k mutually disjoint 1-factors. Thus, there are
sets E1, . . . ,Ek ⊆ E∗ such that Ei ∩E j = /0 whenever i 6= j,
and each Ei is a one-to-one correspondence between the sets
V1 and V2.

Instead of defining a port numbering p, we use the sets
Ei to define a Kripke model

K = (V,(Rα)α∈Ik
+,+

,τ).

For each i ∈ [k], we let R(i,i) = {(u,v) : {(u,1),(v,2)} ∈ Ei},
and if i 6= j, we let R(i, j) = /0. Furthermore, we let τ to be as
in the definition of the models Ka,b(G, p). Clearly, there is a
port numbering p such that K = K+,+(G, p). Moreover, for
every node u ∈V the set {v ∈V : (u,v) ∈ R(i, j)} is nonempty
if and only if i = j. Using this, it is easy to see that the full
relation Z = V ×V is a bisimulation, whence all nodes are
bisimilar in the model K+,+(G, p). ut

Note that the converse of Lemma 3 is true as well: if u
and v are nodes in G such that deg(u) 6= deg(v), then u and
v obviously cannot be bisimilar in the model K+,+(G, p) for
any port numbering p.

1

2
1

2

1

21
2

1
2
1

2

G:

p:

G*:

E1: E2:

R(1,1): R(2,2):

1 2

Fig. 8 An illustration of the proof of Lemma 3.

Our next aim is to show that there is a class of regular
graphs G such that all consistent port numberings of G break
symmetry—this is known from prior work [62] but we give
a proof here for completeness.

Lemma 4 If G is a k-regular graph for an odd k, and there
is a consistent port numbering p of G such that all its nodes
are bisimilar in the model K+,+(G, p), then G has a 1-factor.

Proof Let p be a consistent port numbering of G = (V,E)
such that all nodes of G are bisimilar in K+,+(G, p). Let
F ⊆ [k]2 be the relation {(i, j)∈ [k]2 : R(i, j) 6= /0}. Then F is a
function, since otherwise there are u,v,u′,v′ ∈V and such that
(u,v) ∈ R(i, j) and (u′,v′) ∈ R(i, j′) for some i, j, j′ ∈ [k] with
j 6= j′, which would imply that u and u′ are not bisimilar. Note
further, that by consistency of p, relation F is symmetric: if
(i, j) ∈ F , then (j, i) ∈ F . Thus, F is a permutation of [k]
such that F−1 = F . Since k is odd, there exists i ∈ [k] such
that (i, i) ∈ F . It is now easy to see that the relation R(i,i) is a
1-factor of G. ut

By the previous two lemmas, each regular graph of odd
degree and without 1-factors has an inconsistent symmetric
port numbering, but no consistent symmetric port number-
ings. In the proof of the separation result, we also need the
assumption that all graphs we consider are connected. Thus,
we define G to be the class of all connected regular graphs
of odd degree which do not have a 1-factor. It is easy to
construct k-regular graphs in G for each odd degree k ≥ 3.

20 Lauri Hella et al.

(a) (b)

1

1

1

1 1

1

2

2

2

2

2
22

2

22

3

3

3

3 3

3

3

3
3

3

3

3 3

3

1

1

1

1

1
11

1

11

2

2

2

2 2

2

2

2
2

2

3

3

2

2 2

2

3

3

3

3

3
33

3

33

1

1

1

1 1

1

1

3
3

1

2

2

Fig. 9 (a) A 3-regular graph G that does not have a 1-factor [14, Figure 5.10]. (b) A symmetric port numbering of G.

The graph illustrated in Fig. 9a is an example with k = 3.
Fig. 9b shows an example of an inconsistent symmetric port
numbering of the same graph.

Theorem 7 There is a graph problem Π such that Π ∈
VVc(1) and Π /∈ VV.

Proof We define the graph problem Π as follows: For all
graphs G = (V,E) ∈ G, Π(G) consists of all non-constant
functions S : V→{0,1}, that is, we have u,v∈V with S(u) 6=
S(v). For all graphs G /∈ G, Π(G) consists of all functions
S : V →{0,1}.

Let us first prove that the problem is in VVc(1). Let G =

(V,E) ∈ F(∆) be a graph and p a consistent port numbering
of G. We define the local type of a node v ∈ V to be the
tuple t(v) = (j1, j2, . . . , j∆), where ji is the number of the
port of a neighbour u to which the port (v, i) is connected
if i ∈ [deg(v)], and ji = 0 for i > deg(v). Fix some linear
ordering ≤ of the local types. Then there is a local algorithm
A∆ ∈ Vector such that its output on a node v ∈ V is 1 if
t(u) ≤ t(v) for all neighbours u of v, and 0 otherwise: A∆

computes first in one step the local types of the nodes, and
then in a second step it sends the types to neighbouring nodes,
compares the types, and outputs either 0 or 1 depending on
the comparison.

The crucial observation now is that if G ∈ G, then G has
nodes with different local types. This is seen as follows. If
the local types of all nodes of G are the same, then it is easy
to see that all nodes are bisimilar in the model K+,+(G, p).
Thus, by Lemma 4, either G is not k-regular for any odd k,
or G has a 1-factor.

Assume then that G ∈ G and p is a consistent port num-
bering of G, and consider the output S : V → {0,1} that
is produced by A∆ in (G, p). Since the local types of all
nodes are not the same and G is connected, there are nodes
u,v ∈V such that t(u)< t(v), and t(v) is maximal w.r.t. the
ordering ≤. This means that S(u) = 0 and S(v) = 1, whence
S ∈Π(G). We conclude that the sequence A = (A1,A2, . . .)

of algorithms solves Π assuming consistency.

To see that Π is not in VV, consider a graph G = (V,E)∈
G. By Lemma 3, there exists a port numbering p of G such
that all nodes of G are bisimilar in the model K+,+(G, p) (as
seen above, p is inconsistent). The claim follows now from
Corollary 1a, since the graph problem Π and the set X =V
clearly satisfy its assumption. ut

Corollary 6 We have VVc 6= VV and VVc(1) 6= VV(1).

Proof Follows from Theorem 7. ut

5.4 Conclusions

In summary, we have established that the classes we have
studied form a linear order of length four:

SB(MB= VB(SV =MV = VV (VVc, (1)

SB(1)(MB(1) = VB(1)

(SV(1) =MV(1) = VV(1)(VVc(1).
(2)

As a corollary of (2) and Theorem 1, we can make, for exam-
ple, the following observations.

1. MML captures the same class of problems on K+,+ and
K−,+.

2. Both MML and GMML capture the same class of prob-
lems on K−,+.

3. The class of problems captured by MML becomes strictly
smaller if we replace K−,+ with K+,−.

4. MML on K+,− captures the same class of problems as
GML on K−,−.

Open Questions Related to Equalities. In the proofs of Corol-
laries 2 and 3, our main focus was on devising a simulation
scheme in which the simulation overhead is only proportional
to maximum degree ∆ and running time T —this implies that
local algorithms of a stronger model can be simulated with lo-
cal algorithms in a weaker model. However, in our approach
the simulation overhead is large in terms of message size. It
is an open question if such a high overhead is necessary.

Weak Models of Distributed Computing, with Connections to Modal Logic 21

Open Questions Related to Separations. To keep the proofs
of Theorems 5, 6, and 7 as simple as possible, we introduced
graph problems that were highly contrived. An interesting
challenge is to come up with natural graph problems that
could be used to prove the same separation results. It should
be noted that prior work [10, 62] presents some separation
results that use a natural graph problem—leader election.
However, leader election is a global problem; it cannot be
solved in VVc(1), and hence we cannot use it to separate any
of the constant-time versions of the classes.

Another challenge is to come up with decision problems
that separate the classes. Indeed, it is not known if the separa-
tion results hold if we restrict ourselves to decision problems.

Acknowledgements This work is an extended and revised version of
a preliminary conference report [34]. We thank anonymous reviewers
for their helpful feedback, and Jérémie Chalopin, Mika Göös, and Joel
Kaasinen for discussions and comments.

This work was supported in part by Academy of Finland (grants
129761, 132380, 132812, and 252018), the research funds of Univer-
sity of Helsinki, and Finnish Cultural Foundation. Part of this work
was conducted while Tuomo Lempiäinen was with the Department of
Information and Computer Science at Aalto University.

References

1. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B.,
Kuhn, F.: Beeping a maximal independent set. In: Proc. 25th
International Symposium on Distributed Computing (DISC 2011),
Lecture Notes in Computer Science, vol. 6950, pp. 32–50. Springer
(2011). doi:10.1007/978-3-642-24100-0 3.

2. Angluin, D.: Local and global properties in networks of processors.
In: Proc. 12th Annual ACM Symposium on Theory of Computing
(STOC 1980), pp. 82–93. ACM Press (1980). doi:10.1145/800141.
804655.

3. Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela,
J., Uitto, J.: A local 2-approximation algorithm for the vertex
cover problem. In: Proc. 23rd International Symposium on Dis-
tributed Computing (DISC 2009), Lecture Notes in Computer
Science, vol. 5805, pp. 191–205. Springer (2009). doi:10.1007/
978-3-642-04355-0 21.

4. Åstrand, M., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.:
Local algorithms in (weakly) coloured graphs (2010). arXiv:1002.
0125.

5. Åstrand, M., Suomela, J.: Fast distributed approximation algo-
rithms for vertex cover and set cover in anonymous networks. In:
Proc. 22nd Annual ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA 2010), pp. 294–302. ACM Press (2010).
doi:10.1145/1810479.1810533.

6. Attiya, H., Snir, M., Warmuth, M.K.: Computing on an anonymous
ring. Journal of the ACM 35(4), 845–875 (1988). doi:10.1145/
48014.48247.

7. Benthem, J.v.: Modal correspondence theory. Ph.D. thesis, Instituut
voor Logica en Grondslagenonderzoek van de Exacte Wetenschap-
pen, Universiteit van Amsterdam (1977)

8. Blackburn, P., Benthem, J.v., Wolter, F. (eds.): Handbook of Modal
Logic, Studies in Logic and Practical Reasoning, vol. 3. Elsevier,
Amsterdam (2007)

9. Blackburn, P., Rijke, M.d., Venema, Y.: Modal Logic, Cambridge
Tracts in Theoretical Computer Science, vol. 53. Cambridge Uni-
versity Press, Cambridge, UK (2001)

10. Boldi, P., Shammah, S., Vigna, S., Codenotti, B., Gemmell, P., Si-
mon, J.: Symmetry breaking in anonymous networks: characteriza-
tions. In: Proc. 4th Israel Symposium on the Theory of Computing
and Systems (ISTCS 1996), pp. 16–26. IEEE (1996)

11. Boldi, P., Vigna, S.: Computing vector functions on anonymous
networks. In: Proc. 4th Colloquium on Structural Information
and Communication Complexity (SIROCCO 1997), pp. 201–214.
Carleton Scientific (1997)

12. Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowl-
edge. In: Proc. 18th Annual ACM Symposium on Principles of
Distributed Computing (PODC 1999), pp. 181–188. ACM Press
(1999). doi:10.1145/301308.301355.

13. Boldi, P., Vigna, S.: An effective characterization of computabil-
ity in anonymous networks. In: Proc. 15th International Sym-
posium on Distributed Computing (DISC 2001), Lecture Notes
in Computer Science, vol. 2180, pp. 33–47. Springer (2001).
doi:10.1007/3-540-45414-4 3.

14. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications.
North-Holland, New York (1976)

15. Chalopin, J.: Algorithmique distribuée, calculs locaux et homomor-
phismes de graphes. Ph.D. thesis, LaBRI, Université Bordeaux 1
(2006)

16. Chalopin, J., Das, S., Santoro, N.: Groupings and pairings in
anonymous networks. In: Proc. 20th International Symposium
on Distributed Computing (DISC 2006), Lecture Notes in Com-
puter Science, vol. 4167, pp. 105–119. Springer (2006). doi:
10.1007/11864219 8.

17. Conradie, W.: Definability and changing perspectives: The beth
property for three extensions of modal logic. Master’s thesis,
Institute for Logic, Language and Computation, University of Am-
sterdam (2002)

18. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps.
In: Proc. 24th International Symposium on Distributed Computing
(DISC 2010), Lecture Notes in Computer Science, vol. 6343, pp.
148–162. Springer (2010). doi:10.1007/978-3-642-15763-9 15.

19. Czygrinow, A., Hańćkowiak, M., Krzywdziński, K., Szymańska, E.,
Wawrzyniak, W.: Brief announcement: distributed approximations
for the semi-matching problem. In: Proc. 25th International Sym-
posium on Distributed Computing (DISC 2011), Lecture Notes
in Computer Science, vol. 6950, pp. 200–201. Springer (2011).
doi:10.1007/978-3-642-24100-0 18.

20. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed
approximations in planar graphs. In: Proc. 22nd International
Symposium on Distributed Computing (DISC 2008), Lecture Notes
in Computer Science, vol. 5218, pp. 78–92. Springer (2008). doi:
10.1007/978-3-540-87779-0 6.

21. Diestel, R.: Graph Theory, 4th edn. Springer, Berlin (2010). http:
//diestel-graph-theory.com/.

22. Diks, K., Kranakis, E., Malinowski, A., Pelc, A.: Anonymous
wireless rings. Theoretical Computer Science 145(1–2), 95–109
(1995). doi:10.1016/0304-3975(94)00178-L.

23. Emek, Y., Smula, J., Wattenhofer, R.: Stone age distributed com-
puting (2012). arXiv:1202.1186.

24. Fine, K.: In so many possible worlds. Notre Dame Journal of For-
mal Logic 13(4), 516–520 (1972). doi:10.1305/ndjfl/1093890715.

25. Flocchini, P., Roncato, A., Santoro, N.: Computing on anonymous
networks with sense of direction. Theoretical Computer Science
301(1–3), 355–379 (2003). doi:10.1016/S0304-3975(02)00592-3.

26. Floréen, P., Hassinen, M., Kaasinen, J., Kaski, P., Musto, T.,
Suomela, J.: Local approximability of max-min and min-max linear
programs. Theory of Computing Systems 49(4), 672–697 (2011).
doi:10.1007/s00224-010-9303-6.

27. Floréen, P., Hassinen, M., Kaski, P., Suomela, J.: Local approxima-
tion algorithms for a class of 0/1 max-min linear programs (2008).
arXiv:0806.0282.

28. Floréen, P., Hassinen, M., Kaski, P., Suomela, J.: Tight local ap-
proximation results for max-min linear programs. In: Proc. 4th

http://dx.doi.org/10.1007/978-3-642-24100-0_3
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://dx.doi.org/10.1007/978-3-642-04355-0_21
http://arxiv.org/abs/1002.0125
http://arxiv.org/abs/1002.0125
http://dx.doi.org/10.1145/1810479.1810533
http://dx.doi.org/10.1145/48014.48247
http://dx.doi.org/10.1145/48014.48247
http://dx.doi.org/10.1145/301308.301355
http://dx.doi.org/10.1007/3-540-45414-4_3
http://dx.doi.org/10.1007/11864219_8
http://dx.doi.org/10.1007/11864219_8
http://dx.doi.org/10.1007/978-3-642-15763-9_15
http://dx.doi.org/10.1007/978-3-642-24100-0_18
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://diestel-graph-theory.com/
http://diestel-graph-theory.com/
http://dx.doi.org/10.1016/0304-3975(94)00178-L
http://arxiv.org/abs/1202.1186
http://dx.doi.org/10.1305/ndjfl/1093890715
http://dx.doi.org/10.1016/S0304-3975(02)00592-3
http://dx.doi.org/10.1007/s00224-010-9303-6
http://arxiv.org/abs/0806.0282

22 Lauri Hella et al.

International Workshop on Algorithmic Aspects of Wireless Sen-
sor Networks (Algosensors 2008), Lecture Notes in Computer
Science, vol. 5389, pp. 2–17. Springer (2008). doi:10.1007/
978-3-540-92862-1 2. arXiv:0804.4815.

29. Floréen, P., Kaasinen, J., Kaski, P., Suomela, J.: An optimal local
approximation algorithm for max-min linear programs. In: Proc.
21st Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA 2009), pp. 260–269. ACM Press (2009). doi:
10.1145/1583991.1584058. arXiv:0809.1489.

30. Floréen, P., Kaski, P., Musto, T., Suomela, J.: Approximating
max-min linear programs with local algorithms. In: Proc. 22nd
IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2008). IEEE (2008). doi:10.1109/IPDPS.2008.4536235.
arXiv:0710.1499.

31. Floréen, P., Kaski, P., Polishchuk, V., Suomela, J.: Almost stable
matchings by truncating the Gale–Shapley algorithm. Algorithmica
58(1), 102–118 (2010). doi:10.1007/s00453-009-9353-9. arXiv:
0812.4893.

32. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local ap-
proximation. In: Proc. 31st Annual ACM Symposium on Principles
of Distributed Computing (PODC 2012), pp. 175–184. ACM Press
(2012). doi:10.1145/2332432.2332465. arXiv:1201.6675.

33. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in
a distributed environment. Journal of the ACM 37(3), 549–587
(1990). doi:10.1145/79147.79161.

34. Hella, L., Järvisalo, M., Kuusisto, A., Laurinharju, J., Lempiäinen,
T., Luosto, K., Suomela, J., Virtema, J.: Weak models of distributed
computing, with connections to modal logic. In: Proc. 31st Annual
ACM Symposium on Principles of Distributed Computing (PODC
2012), pp. 185–194. ACM Press (2012). doi:10.1145/2332432.
2332466. arXiv:1205.2051.

35. Immerman, N.: Descriptive Complexity. Graduate Texts in Com-
puter Science. Springer, Berlin (1999)

36. Kuhn, F.: The price of locality: Exploring the complexity of dis-
tributed coordination primitives. Ph.D. thesis, ETH Zurich (2005)

37. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-
sighted. In: Proc. 17th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2006), pp. 980–989. ACM Press (2006).
doi:10.1145/1109557.1109666.

38. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph
coloring. In: Proc. 25th Annual ACM Symposium on Principles
of Distributed Computing (PODC 2006), pp. 7–15. ACM Press
(2006). doi:10.1145/1146381.1146387.

39. Lenzen, C.: Synchronization and symmetry breaking in distributed
systems. Ph.D. thesis, ETH Zurich (2011)

40. Lenzen, C., Oswald, Y.A., Wattenhofer, R.: What can be approxi-
mated locally? TIK Report 331, ETH Zurich, Computer Engineer-
ing and Networks Laboratory (2010). ftp://ftp.tik.ee.ethz.ch/pub/
publications/TIK-Report-331.pdf.

41. Lenzen, C., Wattenhofer, R.: Minimum dominating set approxima-
tion in graphs of bounded arboricity. In: Proc. 24th International
Symposium on Distributed Computing (DISC 2010), Lecture Notes
in Computer Science, vol. 6343, pp. 510–524. Springer (2010).
doi:10.1007/978-3-642-15763-9 48.

42. Linial, N.: Locality in distributed graph algorithms. SIAM Journal
on Computing 21(1), 193–201 (1992). doi:10.1137/0221015.

43. Mayer, A., Naor, M., Stockmeyer, L.: Local computations on static
and dynamic graphs. In: Proc. 3rd Israel Symposium on the Theory
of Computing and Systems (ISTCS 1995), pp. 268–278. IEEE
(1995). doi:10.1109/ISTCS.1995.377023.

44. Moran, S., Warmuth, M.K.: Gap theorems for distributed com-
putation. SIAM Journal on Computing 22(2), 379–394 (1993).
doi:10.1137/0222028.

45. Moscibroda, T.: Locality, scheduling, and selfishness: Algorithmic
foundations of highly decentralized networks. Ph.D. thesis, ETH
Zurich (2006)

46. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM
Journal on Computing 24(6), 1259–1277 (1995). doi:10.1137/
S0097539793254571.

47. Norris, N.: Classifying anonymous networks: when can two net-
works compute the same set of vector-valued functions? In: Proc.
1st Colloquium on Structural Information and Communication
Complexity (SIROCCO 1994), pp. 83–98. Carleton University
Press (1995)

48. Norris, N.: Computing functions on partially wireless networks. In:
Proc. 2nd Colloquium on Structural Information and Communica-
tion Complexity (SIROCCO 1995), pp. 53–64. Carleton University
Press (1996)

49. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach.
SIAM Monographs on Discrete Mathematics and Applications. So-
ciety for Industrial and Applied Mathematics, Philadelphia (2000)

50. Petersen, J.: Die Theorie der regulären graphs. Acta Mathematica
15(1), 193–220 (1891). doi:10.1007/BF02392606.

51. Polishchuk, V., Suomela, J.: A simple local 3-approximation al-
gorithm for vertex cover. Information Processing Letters 109(12),
642–645 (2009). doi:10.1016/j.ipl.2009.02.017. arXiv:0810.2175.

52. de Rijke, M.: A note on graded modal logic. Studia Logica 64(2),
271–283 (2000). doi:10.1023/A:1005245900406.

53. Sangiorgi, D.: On the origins of bisimulation and coinduction.
ACM Transactions on Programming Languages and Systems 31(4),
Article 15 (2009). doi:10.1145/1516507.1516510.

54. Suomela, J.: Distributed algorithms for edge dominating sets. In:
Proc. 29th Annual ACM Symposium on Principles of Distributed
Computing (PODC 2010), pp. 365–374. ACM Press (2010). doi:
10.1145/1835698.1835783.

55. Suomela, J.: Survey of local algorithms. ACM Computing Surveys
45(2), 24:1–40 (2013). doi:10.1145/2431211.2431223. http://www.
cs.helsinki.fi/local-survey/.

56. Wiese, A., Kranakis, E.: Impact of locality on location aware unit
disk graphs. Algorithms 1, 2–29 (2008). doi:10.3390/a1010002.

57. Wolfram, S.: Statistical mechanics of cellular automata. Reviews of
Modern Physics 55(3), 601–644 (1983). doi:10.1103/RevModPhys.
55.601.

58. Yamashita, M., Kameda, T.: Electing a leader when processor
identity numbers are not distinct (extended abstract). In: Proc.
3rd International Workshop on Distributed Algorithms (WDAG
1989), Lecture Notes in Computer Science, vol. 392, pp. 303–314.
Springer (1989). doi:10.1007/3-540-51687-5 52.

59. Yamashita, M., Kameda, T.: Computing functions on asynchronous
anonymous networks. Mathematical Systems Theory 29(4), 331–
356 (1996). doi:10.1007/BF01192691.

60. Yamashita, M., Kameda, T.: Computing on anonymous networks:
part I—characterizing the solvable cases. IEEE Transactions on
Parallel and Distributed Systems 7(1), 69–89 (1996). doi:10.1109/
71.481599.

61. Yamashita, M., Kameda, T.: Computing on anonymous networks:
part II—decision and membership problems. IEEE Transactions
on Parallel and Distributed Systems 7(1), 90–96 (1996). doi:10.
1109/71.481600.

62. Yamashita, M., Kameda, T.: Leader election problem on networks
in which processor identity numbers are not distinct. IEEE Trans-
actions on Parallel and Distributed Systems 10(9), 878–887 (1999).
doi:10.1109/71.798313.

http://dx.doi.org/10.1007/978-3-540-92862-1_2
http://dx.doi.org/10.1007/978-3-540-92862-1_2
http://arxiv.org/abs/0804.4815
http://dx.doi.org/10.1145/1583991.1584058
http://dx.doi.org/10.1145/1583991.1584058
http://arxiv.org/abs/0809.1489
http://dx.doi.org/10.1109/IPDPS.2008.4536235
http://arxiv.org/abs/0710.1499
http://dx.doi.org/10.1007/s00453-009-9353-9
http://arxiv.org/abs/0812.4893
http://arxiv.org/abs/0812.4893
http://dx.doi.org/10.1145/2332432.2332465
http://arxiv.org/abs/1201.6675
http://dx.doi.org/10.1145/79147.79161
http://dx.doi.org/10.1145/2332432.2332466
http://dx.doi.org/10.1145/2332432.2332466
http://arxiv.org/abs/1205.2051
http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1145/1146381.1146387
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-331.pdf
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-331.pdf
http://dx.doi.org/10.1007/978-3-642-15763-9_48
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1109/ISTCS.1995.377023
http://dx.doi.org/10.1137/0222028
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1007/BF02392606
http://dx.doi.org/10.1016/j.ipl.2009.02.017
http://arxiv.org/abs/0810.2175
http://dx.doi.org/10.1023/A:1005245900406
http://dx.doi.org/10.1145/1516507.1516510
http://dx.doi.org/10.1145/1835698.1835783
http://dx.doi.org/10.1145/1835698.1835783
http://dx.doi.org/10.1145/2431211.2431223
http://www.cs.helsinki.fi/local-survey/
http://www.cs.helsinki.fi/local-survey/
http://dx.doi.org/10.3390/a1010002
http://dx.doi.org/10.1103/RevModPhys.55.601
http://dx.doi.org/10.1103/RevModPhys.55.601
http://dx.doi.org/10.1007/3-540-51687-5_52
http://dx.doi.org/10.1007/BF01192691
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1109/71.481599
http://dx.doi.org/10.1109/71.481600
http://dx.doi.org/10.1109/71.481600
http://dx.doi.org/10.1109/71.798313

	Introduction
	Contributions
	Motivation and Related Work
	Connections with Modal Logic
	Relations between the Classes

