470 research outputs found

    Synaptic rewiring in neuromorphic VLSI for topographic map formation

    Get PDF
    A generalised model of biological topographic map development is presented which combines both weight plasticity and the formation and elimination of synapses (synaptic rewiring) as well as both activity-dependent and -independent processes. The question of whether an activity-dependent process can refine a mapping created by an activity-independent process is investigated using a statistical approach to analysingmapping quality. The model is then implemented in custom mixed-signal VLSI. Novel aspects of this implementation include: (1) a distributed and locally reprogrammable address-event receiver, with which large axonal fan-out does not reduce channel capacity; (2) an analogue current-mode circuit for Euclidean distance calculation which is suitable for operation across multiple chips; (3) slow probabilistic synaptic rewiring driven by (pseudo-)random noise; (4) the application of a very-low-current design technique to improving the stability of weights stored on capacitors; (5) exploiting transistor non-ideality to implement partially weightdependent spike-timing-dependent plasticity; (6) the use of the non-linear capacitance of MOSCAP devices to compensate for other non-linearities. The performance of the chip is characterised and it is shown that the fabricated chips are capable of implementing the model, resulting in biologically relevant behaviours such as activity-dependent reduction of the spatial variance of receptive fields. Complementing a fast synaptic weight change mechanism with a slow synapse rewiring mechanism is suggested as a method of increasing the stability of learned patterns

    The Development of Bio-Inspired Cortical Feature Maps for Robot Sensorimotor Controllers

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.This project applies principles from the field of Computational Neuroscience to Robotics research, in particular to develop systems inspired by how nature manages to solve sensorimotor coordination tasks. The overall aim has been to build a self-organising sensorimotor system using biologically inspired techniques based upon human cortical development which can in the future be implemented in neuromorphic hardware. This can then deliver the benefits of low power consumption and real time operation but with flexible learning onboard autonomous robots. A core principle is the Self-Organising Feature Map which is based upon the theory of how 2D maps develop in real cortex to represent complex information from the environment. A framework for developing feature maps for both motor and visual directional selectivity representing eight different directions of motion is described as well as how they can be coupled together to make a basic visuomotor system. In contrast to many previous works which use artificially generated visual inputs (for example, image sequences of oriented moving bars or mathematically generated Gaussian bars) a novel feature of the current work is that the visual input is generated by a DVS 128 silicon retina camera which is a neuromorphic device and produces spike events in a frame-free way. One of the main contributions of this work has been to develop a method of autonomous regulation of the map development process which adapts the learning dependent upon input activity. The main results show that distinct directionally selective maps for both the motor and visual modalities are produced under a range of experimental scenarios. The adaptive learning process successfully controls the rate of learning in both motor and visual map development and is used to indicate when sufficient patterns have been presented, thus avoiding the need to define in advance the quantity and range of training data. The coupling training experiments show that the visual input learns to modulate the original motor map response, creating a new visual-motor topological map.EPSRC, University of Plymouth Graduate Schoo

    Spiking neural networks for computer vision

    Get PDF
    State-of-the-art computer vision systems use frame-based cameras that sample the visual scene as a series of high-resolution images. These are then processed using convolutional neural networks using neurons with continuous outputs. Biological vision systems use a quite different approach, where the eyes (cameras) sample the visual scene continuously, often with a non-uniform resolution, and generate neural spike events in response to changes in the scene. The resulting spatio-temporal patterns of events are then processed through networks of spiking neurons. Such event-based processing offers advantages in terms of focusing constrained resources on the most salient features of the perceived scene, and those advantages should also accrue to engineered vision systems based upon similar principles. Event-based vision sensors, and event-based processing exemplified by the SpiNNaker (Spiking Neural Network Architecture) machine, can be used to model the biological vision pathway at various levels of detail. Here we use this approach to explore structural synaptic plasticity as a possible mechanism whereby biological vision systems may learn the statistics of their inputs without supervision, pointing the way to engineered vision systems with similar online learning capabilities

    Large Developing Axonal Arbors Using a Distributed and Locally-Reprogrammable Address-Event Receiver

    Get PDF

    Synaptic clustering during development and learning: the why, when, and how

    Get PDF
    To contribute to a functional network a neuron must make specific connections and integrate the synaptic inputs that it receives in a meaningful way. Previous modeling and experimental studies have predicted that this specificity could entail a subcellular organization whereby synapses that carry similar information are clustered together on local stretches of dendrite. Recent imaging studies have now, for the first time, demonstrated synaptic clustering during development and learning in different neuronal circuits. Interestingly, this organization is dependent on synaptic activity and most likely involves local plasticity mechanisms. Here we discuss these new insights and give an overview of the candidate plasticity mechanisms that could be involved

    A Model for Cortical Rewiring Following Deafferentation and Focal Stroke

    Get PDF
    It is still unclear to what extent structural plasticity in terms of synaptic rewiring is the cause for cortical remapping after a lesion. Recent two-photon laser imaging studies demonstrate that synaptic rewiring is persistent in the adult brain and is dramatically increased following brain lesions or after a loss of sensory input (cortical deafferentation). We use a recurrent neural network model to study the time course of synaptic rewiring following a peripheral lesion. For this, we represent axonal and dendritic elements of cortical neurons to model synapse formation, pruning and synaptic rewiring. Neurons increase and decrease the number of axonal and dendritic elements in an activity-dependent fashion in order to maintain their activity in a homeostatic equilibrium. In this study we demonstrate that synaptic rewiring contributes to neuronal homeostasis during normal development as well as following lesions. We show that networks in homeostasis, which can therefore be considered as adult networks, are much less able to compensate for a loss of input. Interestingly, we found that paused stimulation of the networks are much more effective promoting reorganization than continuous stimulation. This can be explained as neurons quickly adapt to this stimulation whereas pauses prevents a saturation of the positive stimulation effect. These findings may suggest strategies for improving therapies in neurologic rehabilitation

    Rapid bidirectional reorganization of cortical microcircuits.

    Get PDF
    Mature neocortex adapts to altered sensory input by changing neural activity in cortical circuits. The underlying cellular mechanisms remain unclear. We used blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to show reorganization in somatosensory cortex elicited by altered whisker sensory input. We found that there was rapid expansion followed by retraction of whisker cortical maps. The cellular basis for the reorganization in primary somatosensory cortex was investigated with paired electrophysiological recordings in the periphery of the expanded whisker representation. During map expansion, the chance of finding a monosynaptic connection between pairs of pyramidal neurons increased 3-fold. Despite the rapid increase in local excitatory connectivity, the average strength and synaptic dynamics did not change, which suggests that new excitatory connections rapidly acquire the properties of established excitatory connections. During map retraction, entire excitatory connections between pyramidal neurons were lost. In contrast, connectivity between pyramidal neurons and fast spiking interneurons was unchanged. Hence, the changes in local excitatory connectivity did not occur in all circuits involving pyramidal neurons. Our data show that pyramidal neurons are recruited to and eliminated from local excitatory networks over days. These findings suggest that the local excitatory connectome is dynamic in mature neocortex
    corecore