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Abstract. A model of topographic map development is presented which
combines both weight plasticity and the formation and elimination of
synapses as well as both activity-dependent and -independent processes.
We statistically address the question of whether an activity-dependent
process can refine a mapping created by an activity-independent process.
A new method of evaluating the quality of topographic projections is
presented which allows independent consideration of the development of
a projection’s preferred locations and variance. Synapse formation and
elimination embed in the network topology changes in the weight dis-
tributions of synapses due to the activity-dependent learning rule used
(spike-timing-dependent plasticity). In this model, variance of a projec-
tion can be reduced by an activity dependent mechanism with or without
spatially correlated inputs, but the accuracy of preferred locations will
not necessarily improve when synapses are formed based on distributions
with on-average perfect topography.

1 Introduction

The development of topographic mappings in the connections between brain
areas is a subject that continues to occupy neuroscientists. There have been a
number of investigations of the development of maps through networks with
fixed connectivity and changes to synaptic weights [1–5]. Other models have
considered the formation and elimination of synapses with fixed weight [6]. In-
deed a mathematical equivalence between such models has been demonstrated
for certain conditions [7]. There have been few attempts to include both forms of
plasticity in a model (though see [8, 9]) however since both forms of plasticity are
known to exist, we have created a model of topographic map development which
combines both forms of plasticity and we explore some of the consequences of
this model. This work is part of an overall project to implement synaptic rewiring
in neuromorphic VLSI [10], however the model and results presented here are
purely computational.

Theories of topographic map formation can be divided by the extent to which
activity-dependent processes, based on Hebbian reinforcement of the correlated



activity of neighbouring cells, are deemed responsible for the formation of topog-
raphy. Some assume that activity-independent processes, based on chemoaffinity
[11] provide an approximate mapping, which is then refined [12]. Others [5, 13]
show how activity-independent processes may fully determine the basic topogra-
phy, thus relegating the role of activity-dependent processes to the formation of
“functional architecture” e.g. oculardominance stripes etc. [14]. Our model is in
the latter of these categories, assuming that synapses are placed with on-average
perfect topography by an activity-independent process. Miller [7] gives evidence
that the decision whether newly sprouted synapses are stabilized or retracted
may be guided by changes in their physiological strengths; this is a basis for our
model.

2 Model

This generalised model of map formation could equally apply to retino-tectal,
retino-geniculate or geniculo-cortical projections. There are 2 layers (i.e. 2D
spaces on which neurons are located), the input layer and the network layer.
Each location in one layer has a corresponding “ideal” location in the other,
such that one layer maps smoothly and completely to the other. For simplic-
ity neural areas are square grids of neurons and the 2 layers are the same size
(16 x 16 in the simulations presented here). We have worked with small maps
due to computational constraints; this has necessitated a rigorous statistical ap-
proach, which is an overdue development in this field, as noted by [14]. Periodic
boundaries are imposed to avoid edge artefacts.

Each cell in the network layer can receive a maximum number of afferent
synapses (32 in our simulations). Whilst we acknowledge arguments for the util-
ity of inhibitory lateral connections in building functional architecture [8] we
simplified our model using the finding [4] that a topographic projection could
form in the absence of long-range lateral inhibition. Thus, two excitatory projec-
tions are used, a feed-forward and a lateral projection; these projections compete
for the synaptic capacity of the network neurons. We assume that an unspec-
ified activity-independent process is capable of guiding the formation of new
synapses so that they are distributed around their ideal locations. We assume a
Gaussian distribution, since a process which is initially directed towards a target
site and then randomly branches on its way would yield a Gaussian distribution
of terminations around the target site.

To implement this, where a network cell has less than its maximum number
of synapses, the remaining slots are considered “potential synapses”. At a fixed
“rewiring” rate a synapse from the neurons of the network layer is randomly cho-
sen. If it is a potential synapse a possible pre-synaptic cell is randomly selected
and synapse formation occurs when:

r < pform.e
−

δ2

2σform
2

(1)

where r is a random number uniformly distributed in the range (0, 1), pform is
the peak formation probability, δ is the distance of the possible pre-synaptic cell



from the ideal location of the post-synaptic cell and σform
2 is the variance of

the connection field. In other words a synapse is formed when a uniform random
number falls within the area defined by a Gaussian function of distance, scaled
according to the peak probability of synapse formation, (which occurs at δ = 0).
This is essentially a rejection sampling process.

Lateral connections are formed by the same means as feed-forward connec-
tions though σform is different for each projection and pform is set correspond-
ingly to allow the same overall probability of formation for each projection. In
the absence of a general rule for the relative numbers of feed-forward vs lateral
connections formed, starting with equal numbers of each is a good basis for ob-
serving the relative development of these projections; σform−feedforward is given
a larger value than σform−lateral, in line with generic parameters given in [8].

If the selected synapse already exists it is considered for elimination. In gen-
eral we propose that the probability of elimination should be some monotonically
decreasing function of weight. Due to the nature of the learning rule we have
chosen (STDP; see below in this section), which tends to deliver a bimodal
weight distribution, we have simplified probability of elimination to one of 2
values with a higher value for synapses with weights below a certain threshold
(pelim−dep) and vice versa (pelim−pot). Data is scarce on appropriate values for
these probabilities, however dendritic spines have been imaged extending and
retracting over periods of hours compared with others stable over a month or
more [15]. We have used much higher rates so that synapses have several chances
to rewire during the short periods for which it was tractable to run simulations,
while maintaining a large difference between these probabilities (in fact we used
a factor of 180 representing the difference between 4 hours and 1 month).

The rest of our model is strongly based on [4]. We use integrate and fire
neurons, where the membrane potential Vmem is described by:

τmem
δVmem

δt
= Vrest − Vmem + gex(t)(Eex − Vmem) (2)

where Eex is the excitatory reversal potential, Vrest is the resting potential
and τmem is the membrane time constant. Upon reaching a threshold Vthr, a
spike occurs and Vmem is reset to Vrest. A presynaptic spike at time 0 causes

a synaptic conductance gex(t) = ge
−t
τex (where τex is the synaptic time con-

stant); this is cumulative for all presynaptic spikes. Spike-timing-dependent plas-
ticity is implemented such that a presynaptic spike at time tpre and a post-
synaptic spike at time tpost modify the corresponding synaptic conductance by
g → g + gmaxF (∆t), where ∆t = tpre − tpost and:

F (∆t) =

{

A+.e
( ∆t

τ+
)
, if∆t < 0

−A
−

.e
(−∆t

τ
−

)
, if∆t ≥ 0

}

(3)

where A+/− are magnitudes and τ+/− are time constants for potentiation and
depression respectively. This is cumulative for all pre- and post-synaptic spike
pairs. g is bounded in the range 0 ≤ g ≤ gmax.



Parameters were set starting from parameters given in [4]. A+ was increased
20-fold as a concession to limited computational resources for simulations (this
should not qualitatively change the model since many plasticity events are still
needed to potentiate a depressed synapse). Then key parameters were changed;
namely gmax (the peak synaptic conductivity), τ−/τ+ (the ratio of time con-
stants for depression and potentiation) and B (the ratio of potentiation to de-
pression, i.e. A+/A

−
) were changed to maintain key conditions, being: the total

weight should be approximately 50% of the maximum possible; the average net-
work neuron firing rate should approximately match the average input firing
rate; and the total weight of lateral synapses should roughly match the weight
of feed-forward ones. In the interests of simplicity we did not allow for different
values of B for different projections feedforward vs recurrent). An unjustified
simplification is that new synapses start strong and then get weakened; the op-
posite case seems more likely. We have used this for simplicity because it avoids
the need for any homeostatic mechanisms to kick-start the network.

Each input cell was an independent Poisson process. A stimulus location was
chosen and mean firing rates were given a Gaussian distribution around that
location based on a peak rate fpeak and variance σstim

2 which was added to a
base rate fbase. The stimulus location changed regularly every 0.02s. This reg-
ularity is a move away from biologically realistic inputs (c.f. [4]); this was a
necessary concession to provide stronger correlation cues given the smaller num-
ber of synapses per neuron. A further concession was the more extreme values of
fbase and fpeak. σstim was chosen to be between the values of σform−feedforward

and σform−lateral and fpeak was set so as to keep the overall mean firing rate at
a mean value fmean which gave sufficient difference between fbase and fpeak.

3 Results

Simulations were run with a C++ function, with initial conditions created and
data analysis carried out with Matlab. Simulations used a time step of 0.1ms.
Parameters are given in table 1. The mean frequency of rewiring opportunities
per potential synapse was 1.22Hz (depressed synapses were therefore eliminated
after an average of 33s). Initial placement of synapses was performed by itera-
tively generating a random pre-synaptic partner and carrying out the test for
formation described in section 2. Initially feed-forward and lateral connections
were placed separately, each up to their initial number of 16 synapses. Weights
were initially maximised. Runs were for 5 minutes of simulated time.

For calculating the preferred location for each target cell, the use of the
“centre of mass” measure as in [6] would be erroneous because the space is
toroidal and therefore the calculation of preferred location would be skewed by
the choice of reference point from which synapses’ coordinates are measured. In
[6] the reference point for calculating centre of mass of the dendritic synapses of
a target cell was chosen as the predefined ideal location, therefore the measures
of distance of preferred location were skewed towards the ideal locations dictated
by the model. We avoided this by the novel method of searching for the location



Table 1. Simulation parameters

for STDP for rewiring for inputs

gmax = 0.2 σform−feedforward = 2.5 fmean = 20Hz
τm = 0.02s σform−lateral = 1 fbase = 5Hz
τ+ = 0.02s pform−lateral = 1 fpeak = 152.8Hz
τ
−

= 0.064s pform−feedforward = 0.16 σstim = 2
A+ = 0.1s pelim−dep = 0.0245(= 0.5∗mean formation rate)
B = 1.2 pelim−pot = pelim−dep/180 = 1.36 ∗ 10 − 4

around which the afferent synapses have the lowest “weighted variance” (σaff
2),

i.e.:

σ2
aff = argmin

x

∑

i

wi.|pxi|
2

∑

i

wi

(4)

where i is a sum over synapses, x is a candidate preferred location, |pxi| is the
minimum distance from that location of the afferent for synapse i and wi is the
weight of the synapse (if connectivity is evaluated without reference to weights,
synapses have unitary weight). We implemented this with an iterative search
over each whole number location in each dimension and then a further iteration
to locate the preferred location to 1/10th of a unit of distance (the unit is the
distance between two adjacent neurons). Note that in the non-toroidal case this
measure is equivalent to the centre of mass, as used in [3].

Having calculated the preferred location for all the neurons in the network
layer we took the mean of the distance of this preferred location from the ideal
location to give an Average Absolute Deviation (AAD) for the projection. By
reporting both AAD and mean σaff for a projection we have a basis for sep-
arating its variance from the deviation of its preferred location from its ideal
location. However AAD and mean σaff are both dependent on the numbers and
strengths of synapses and these can change during development. Therefore to
observe the effect of the activity-dependent development mechanism irrespec-
tive of changes in synapse number and strength we made comparison in two
ways. Firstly, for evaluating change in mapping quality based only on changes
in connectivity without considering the weights of synapses we created a new
map taking the final number of synapses for each network neuron and randomly
placing them in the same way as the initial synapses were placed. We then cal-
culated σaff and AD for each neuron in each of the maps and compared the
averages of these (i.e. mean σaff and AAD), applying significance tests between
the values of two populations of neurons, i.e. all the neurons on the final map
vs all those on the reconstructed map. Having established what effect there was
on connectivity we considered the additional contribution of weight changes by
creating a new map with the same topology, taking the final weights of synapses
for each network neuron and randomly reassigning these weights amongst the



existing synapses for that neuron. We then compared the two maps as described
above.

Three main experiments were carried out: Case 1 had both rewiring and in-
put correlations, as described in section 2; case 2 had input correlations but no
rewiring; case 3 had rewiring but no input correlations (i.e. all input neurons
fired at fmean). The results are given in table 2. For comparisons, mean σaff

Table 2. Summary of simulation results: Case 1: Rewiring and input correlations; Case
2: Input correlations and no rewiring; Case 3: Rewiring and no input correlations

Case 1 2 3

Network neuron mean spike rate 24.7 17.4 10.5

Final mean no. feed-forward incoming synapses per network neuron 14.1 NA 12.5

Weight as proportion of max for the initial no. of synapses 0.60 0.36 0.33

Mean σaff−init 2.36 2.36 2.36

Mean σaff−final−con−shuffled 2.34 NA 2.28

Mean σaff−final−con 1.95 2.36 2.17

Mean σaff−final−weight−shuffled 1.97 2.16 2.04

Mean σaff−final−weight 1.70 1.98 1.95

AADinit 0.78 0.78 0.78

AADfinal−con−shuffled 0.90 NA 0.96

AADfinal−con 0.83 0.78 0.93

AADfinal−weight−shuffled 0.96 1.40 1.33

AADfinal−weight 0.95 1.58 1.34

and AAD were each calculated for the feed-forward connections of the following
networks: The initial state with weights not considered (recall that all weights
were initially maximised) these results are suffixed init, i.e. AADinit; the final
network with weights not considered but only connectivity with all synapses
weighted equally, i.e. AADfinal−con; for comparison with AADfinal−con, the fi-
nal number of synapses for each network neuron randomly placed in the same
way as the initial synapses (not applicable for simulations with no rewiring), i.e.
AADfinal−con−shuffled; the final network including weights, i.e. AADfinal−weight;
for comparison with AADfinal−weight, the final connectivity for each network
neuron with the actual weights of the final synapses for each network neuron ran-
domly reassigned amongst the existing synapses, i.e. AADfinal−weight−shuffled.
Results were compared using Kolmogorov-Smirnov (KS) tests on AD and σaff

for incoming connections for each network neuron over the whole network layer
for a single simulation of each of the two conditions under consideration.

4 Discussion

We observe the effect of rewiring by comparing case 1 (with rewiring) and case 2
(without rewiring). Considering topology change, in case 1 mean σaff−final−con



drops to 1.95, c.f. 2.34 for mean σaff−final−con−shuffled; this drop is significant
(KS, p=5.3e-25). In case 2 mean σaff−final−con is constrained to remain at mean
σaff−init = 2.36. Considering weight change, in case 1 mean σaff−final−weight

drops to 1.70, c.f. 1.97 for mean σaff−final−weight−shuffled. In case 2, mean
σaff−fin−weight drops to 1.98, c.f. 2.16 for mean σaff−final−weight−shuffled.
Both drops are significant (KS, p=3.6e-09 and 0.0024 respectively).

Fig. 1. A-C: Normalised weight density of incoming lateral synapses (weight/unit area;
y-axis) radially sampled and interpolated at given distances of pre-synaptic neuron from
post-synaptic neuron (x-axis), averaged across population. D-F: ocular preference, i.e.
preference for cells from the two intra-correlated input spaces interspersed in the input
space, for each network cell on a scale from white to black. A,D: initial. B,E: final,
considering synaptic weights. C,F: final, all synapses with unitary weight.

Mean σaff−final−weight appears to be lower in case 1 than case 2. We cannot
say for sure that this superior reduction of variance is due to the effect of the
rewiring mechanism because the different numbers of final synapses in each case
make a comparison impossible, however there is a good reason to believe that
this is so: the drop in mean σaff−final−con. This drop on its own indicates that
the rewiring mechanism has helped to reduce variance and would also lay the
groundwork for different final measures of σaff when weights are considered.

We can also see qualitatively that the effect of rewiring is to embed in the
connectivity of the network input preferences which arise through the weight
changes mediated by the learning rule. STDP favours causal inputs with the
lowest latency and local excitatory lateral connections tend to lose the compe-
tition with excitatory feed-forward connections as they have a higher latency
[4]. The extreme of this effect can be seen in synapses from a network neuron



back to itself (recurrent synapses). The placement rule allows these synapses to
form, however these synapses only ever receive a pre-synaptic spike immediately
following a post-synaptic spike and therefore they are always depressed by the
learning rule. Figure 1A shows the initial density of incoming lateral synapses
from pre-synaptic partners at given distances out from the post-synaptic neuron.
It can be seen that the average neuron receives more synapses from itself (those
at x-position 0) than from any of its closest neighbours. Figure 1B shows the fi-
nal distribution where synapses are weighted. The recurrent synapses have been
depressed much more than their neighbours. Figure 1C shows the final distribu-
tion only considering numbers of synapses and not their weights. The proportion
of recurrent synapses to lateral synapses with neighbours has reduced from the
initial state, due to the preferential elimination of the weak recurrent synapses.

As a further demonstration of the effect of rewiring a simulation was carried
out with the input neurons divided into two groups, mimicking the effect of
binocular inputs. The groups were interspersed in a regular diagonal pattern,
i.e. each input neuron is in the opposite group to its 4 adjacent neurons; the
stimulus location switched between the two groups every time it changed. To
keep the overall input rate the same the peak firing rate was doubled. Figure
1D shows the initial preference of each network neuron for input neurons in the
two groups. Figure 1E shows the final ocular dominance map where synapses are
weighted. Although the space used was too small and the result of the learning
rule with a small number of synapses too random for familiar striped ocular
dominance patterns to emerge (c.f. [3]) ocular dominance zones can be seen.
This pattern is reflected in the final map of connectivity in Figure 1F, where
synaptic weights are not considered; another example of weight patterns caused
by input activity becoming embedded in connectivity patterns.

Considering the effect of the algorithm on AAD, in case 2 AADfinal−weight

is significantly increased c.f. AADfinal−weight−shuffled (KS, p=0.0084). In case
1 the corresponding change is not significant (KS, p=0.94). In case 1 the drop
in AADfinal−con c.f. AADfinal−con−shuffled is not significant (KS, p=0.16).

The basic action of weight-independent STDP on a set of incoming synapses
for a single neuron is to deliver a bimodal weight distribution [4]. Where there are
input correlations these cause the more correlated inputs to be maximised and
the less- or un-correlated inputs to be minimised. The effect of both the input
correlations and the local excitatory lateral synapses on each individual incoming
connection field then should be to cause a patch of neighbouring synapses to
become potentiated and for outliers from this patch to be depressed. The location
of the patch will be random; it is likely to form near the ideal location because
there should be a denser concentration of synapses there, however the centre of
the patch is unlikely to fall exactly on the ideal location but rather a certain
mean distance from it. This introduces a shift of preferred location from the
ideal location. Rewiring cannot be expected to eliminate this error but it might
be expected to allow the patch to move towards the centre as σaff reduces
due to the preferential placement of synapses towards the centre. However in
our simulations AAD did not improve. The slight drop in AADfinal−con c.f.



AADfinal−con−shuffled is not significant but in any case a drop in AAD could
only be a result of the reduction in mean σaff because AADfinal−weight does
not decrease, rather it stays the same (as in case 1) or increases (as in case 2).
That is to say, the result of the weight changes is not to drive the preferred
location towards the ideal. Rather, the improvement of topography is driven by
the continued placement of synapses towards the ideal location; the activity-
dependent mechanism simply facilitates by allowing the incoming connection
field to be narrowed by the preferential elimination of outliers.

Considering the role of input correlations, in case 3 (rewiring but no input cor-
relations) mean σaff−final−con = 2.17, vs 2.28 for mean σaff−final−con−shuffled;
this is significant (KS, p=0.011). Mean σaff−final−weight = 1.95 vs 2.04 for mean
σaff−final−weight−shuffled; this is not significant (KS, p=0.16).

Although the slight drop in mean σaff−final−weight is not statistically sig-
nificant, it is nevertheless a sufficient cue to drive the narrowing of the incoming
connection fields, as evidenced by the drop in mean σaff−final−con. It was shown
[8] that functional architecture could form in the absence of any input except
uncorrelated random noise. We show that this applies to topographic map refine-
ment as well, although our explanation differs: A spike from a single input neuron
will excite a given network neuron and any other of its neighbours which have
a feed-forward synapse from that input. Thus the neuron will also on average
receive some excitation from lateral connections because of that spike. Because
network neurons sample afferent neurons more densely around their ideal loca-
tions they are more likely to share an afferent with a neighbour if that afferent
is close to their ideal location. Thus synapses from afferents closer to the ideal
location are more likely to be potentiated. Therefore the gradient of connection
density set up by the activity-independent placement process acts as a cue which
allows the preferential elimination of outliers, giving a reduction in variance as
described above in this section.

5 Conclusions

We have presented a model of topographic development including both weight
and wiring plasticity, which follows the reasonable assumptions that synapses
preferentially form in locations to which their axons are guided and that weaker
synapses are more likely to be eliminated. We have shown that spatially corre-
lated inputs help to create patterns of synaptic weights which favour narrower
projections, but the spatial correlations are not necessary for some reduction
of variance to occur (extending a result from [8]). A weight-change mechanism
and a rewiring mechanism can work together to achieve a greater effect than the
weight changes alone, with the rewiring mechanism acting to embed patterns of
synaptic strengths in the network topology; this is as one would expect, though
it has not been demonstrated quantitatively before, to our knowledge. The ac-
curacy of preferred locations for network neurons however may not necessarily
improve when synapses are formed based on distributions with on-average per-
fect topography to start with. The novel division of mapping quality into the



quantities of mean σaff and AAD is therefore a useful means for investigating
these effects, and we have demonstrated a method of applying statistical signif-
icance tests to extract highly significant effects from small-scale simulations.
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