1,350 research outputs found

    Streaming and Massively Parallel Algorithms for Edge Coloring

    Get PDF
    A valid edge-coloring of a graph is an assignment of "colors" to its edges such that no two incident edges receive the same color. The goal is to find a proper coloring that uses few colors. (Note that the maximum degree, Delta, is a trivial lower bound.) In this paper, we revisit this fundamental problem in two models of computation specific to massive graphs, the Massively Parallel Computations (MPC) model and the Graph Streaming model: - Massively Parallel Computation: We give a randomized MPC algorithm that with high probability returns a Delta+O~(Delta^(3/4)) edge coloring in O(1) rounds using O(n) space per machine and O(m) total space. The space per machine can also be further improved to n^(1-Omega(1)) if Delta = n^Omega(1). Our algorithm improves upon a previous result of Harvey et al. [SPAA 2018]. - Graph Streaming: Since the output of edge-coloring is as large as its input, we consider a standard variant of the streaming model where the output is also reported in a streaming fashion. The main challenge is that the algorithm cannot "remember" all the reported edge colors, yet has to output a proper edge coloring using few colors. We give a one-pass O~(n)-space streaming algorithm that always returns a valid coloring and uses 5.44 Delta colors with high probability if the edges arrive in a random order. For adversarial order streams, we give another one-pass O~(n)-space algorithm that requires O(Delta^2) colors

    Coresets Meet EDCS: Algorithms for Matching and Vertex Cover on Massive Graphs

    Full text link
    As massive graphs become more prevalent, there is a rapidly growing need for scalable algorithms that solve classical graph problems, such as maximum matching and minimum vertex cover, on large datasets. For massive inputs, several different computational models have been introduced, including the streaming model, the distributed communication model, and the massively parallel computation (MPC) model that is a common abstraction of MapReduce-style computation. In each model, algorithms are analyzed in terms of resources such as space used or rounds of communication needed, in addition to the more traditional approximation ratio. In this paper, we give a single unified approach that yields better approximation algorithms for matching and vertex cover in all these models. The highlights include: * The first one pass, significantly-better-than-2-approximation for matching in random arrival streams that uses subquadratic space, namely a (1.5+ϵ)(1.5+\epsilon)-approximation streaming algorithm that uses O(n1.5)O(n^{1.5}) space for constant ϵ>0\epsilon > 0. * The first 2-round, better-than-2-approximation for matching in the MPC model that uses subquadratic space per machine, namely a (1.5+ϵ)(1.5+\epsilon)-approximation algorithm with O(mn+n)O(\sqrt{mn} + n) memory per machine for constant ϵ>0\epsilon > 0. By building on our unified approach, we further develop parallel algorithms in the MPC model that give a (1+ϵ)(1 + \epsilon)-approximation to matching and an O(1)O(1)-approximation to vertex cover in only O(loglogn)O(\log\log{n}) MPC rounds and O(n/polylog(n))O(n/poly\log{(n)}) memory per machine. These results settle multiple open questions posed in the recent paper of Czumaj~et.al. [STOC 2018]

    On Simultaneous Two-player Combinatorial Auctions

    Full text link
    We consider the following communication problem: Alice and Bob each have some valuation functions v1()v_1(\cdot) and v2()v_2(\cdot) over subsets of mm items, and their goal is to partition the items into S,SˉS, \bar{S} in a way that maximizes the welfare, v1(S)+v2(Sˉ)v_1(S) + v_2(\bar{S}). We study both the allocation problem, which asks for a welfare-maximizing partition and the decision problem, which asks whether or not there exists a partition guaranteeing certain welfare, for binary XOS valuations. For interactive protocols with poly(m)poly(m) communication, a tight 3/4-approximation is known for both [Fei06,DS06]. For interactive protocols, the allocation problem is provably harder than the decision problem: any solution to the allocation problem implies a solution to the decision problem with one additional round and logm\log m additional bits of communication via a trivial reduction. Surprisingly, the allocation problem is provably easier for simultaneous protocols. Specifically, we show: 1) There exists a simultaneous, randomized protocol with polynomial communication that selects a partition whose expected welfare is at least 3/43/4 of the optimum. This matches the guarantee of the best interactive, randomized protocol with polynomial communication. 2) For all ε>0\varepsilon > 0, any simultaneous, randomized protocol that decides whether the welfare of the optimal partition is 1\geq 1 or 3/41/108+ε\leq 3/4 - 1/108+\varepsilon correctly with probability >1/2+1/poly(m)> 1/2 + 1/ poly(m) requires exponential communication. This provides a separation between the attainable approximation guarantees via interactive (3/43/4) versus simultaneous (3/41/108\leq 3/4-1/108) protocols with polynomial communication. In other words, this trivial reduction from decision to allocation problems provably requires the extra round of communication

    Brief Announcement: Streaming and Massively Parallel Algorithms for Edge Coloring

    Get PDF
    A valid edge-coloring of a graph is an assignment of "colors" to its edges such that no two incident edges receive the same color. The goal is to find a proper coloring that uses few colors. In this paper, we revisit this problem in two models of computation specific to massive graphs, the Massively Parallel Computations (MPC) model and the Graph Streaming model: Massively Parallel Computation. We give a randomized MPC algorithm that w.h.p., returns a (1+o(1))Delta edge coloring in O(1) rounds using O~(n) space per machine and O(m) total space. The space per machine can also be further improved to n^{1-Omega(1)} if Delta = n^{Omega(1)}. This is, to our knowledge, the first constant round algorithm for a natural graph problem in the strongly sublinear regime of MPC. Our algorithm improves a previous result of Harvey et al. [SPAA 2018] which required n^{1+Omega(1)} space to achieve the same result. Graph Streaming. Since the output of edge-coloring is as large as its input, we consider a standard variant of the streaming model where the output is also reported in a streaming fashion. The main challenge is that the algorithm cannot "remember" all the reported edge colors, yet has to output a proper edge coloring using few colors. We give a one-pass O~(n)-space streaming algorithm that always returns a valid coloring and uses 5.44 Delta colors w.h.p., if the edges arrive in a random order. For adversarial order streams, we give another one-pass O~(n)-space algorithm that requires O(Delta^2) colors

    Hardness of Easy Problems: Basing Hardness on Popular Conjectures such as the Strong Exponential Time Hypothesis (Invited Talk)

    Get PDF
    Algorithmic research strives to develop fast algorithms for fundamental problems. Despite its many successes, however, many problems still do not have very efficient algorithms. For years researchers have explained the hardness for key problems by proving NP-hardness, utilizing polynomial time reductions to base the hardness of key problems on the famous conjecture P != NP. For problems that already have polynomial time algorithms, however, it does not seem that one can show any sort of hardness based on P != NP. Nevertheless, we would like to provide evidence that a problem AA with a running time O(n^k) that has not been improved in decades, also requires n^{k-o(1)} time, thus explaining the lack of progress on the problem. Such unconditional time lower bounds seem very difficult to obtain, unfortunately. Recent work has concentrated on an approach mimicking NP-hardness: (1) select a few key problems that are conjectured to require T(n) time to solve, (2) use special, fine-grained reductions to prove time lower bounds for many diverse problems in P based on the conjectured hardness of the key problems. In this abstract we outline the approach, give some examples of hardness results based on the Strong Exponential Time Hypothesis, and present an overview of some of the recent work on the topic
    corecore