1,840 research outputs found

    Symmetry Detection of Rational Space Curves from their Curvature and Torsion

    Full text link
    We present a novel, deterministic, and efficient method to detect whether a given rational space curve is symmetric. By using well-known differential invariants of space curves, namely the curvature and torsion, the method is significantly faster, simpler, and more general than an earlier method addressing a similar problem. To support this claim, we present an analysis of the arithmetic complexity of the algorithm and timings from an implementation in Sage.Comment: 25 page

    Extended Gravity Cosmography

    Full text link
    Cosmography can be considered as a sort of a model-independent approach to tackle the dark energy/modified gravity problem. In this review, the success and the shortcomings of the Λ\LambdaCDM model, based on General Relativity and standard model of particles, are discussed in view of the most recent observational constraints. The motivations for considering extensions and modifications of General Relativity are taken into account, with particular attention to f(R)f(R) and f(T)f(T) theories of gravity where dynamics is represented by curvature or torsion field respectively. The features of f(R)f(R) models are explored in metric and Palatini formalisms. We discuss the connection between f(R)f(R) gravity and scalar-tensor theories highlighting the role of conformal transformations in the Einstein and Jordan frames. Cosmological dynamics of f(R)f(R) models is investigated through the corresponding viability criteria. Afterwards, the equivalent formulation of General Relativity (Teleparallel Equivalent General Relativity) in terms of torsion and its extension to f(T)f(T) gravity is considered. Finally, the cosmographic method is adopted to break the degeneracy among dark energy models. A novel approach, built upon rational Pad\'e and Chebyshev polynomials, is proposed to overcome limits of standard cosmography based on Taylor expansion. The approach provides accurate model-independent approximations of the Hubble flow. Numerical analyses, based on Monte Carlo Markov Chain integration of cosmic data, are presented to bound coefficients of the cosmographic series. These techniques are thus applied to reconstruct f(R)f(R) and f(T)f(T) functions and to frame the late-time expansion history of the universe with no \emph{a priori} assumptions on its equation of state. A comparison between the Λ\LambdaCDM cosmological model with f(R)f(R) and f(T)f(T) models is reported.Comment: 82 pages, 35 figures. Accepted for publication in IJMP

    Involutions of polynomially parametrized surfaces

    Full text link
    We provide an algorithm for detecting the involutions leaving a surface defined by a polynomial parametrization invariant. As a consequence, the symmetry axes, symmetry planes and symmetry center of the surface, if any, can be determined directly from the parametrization, without computing or making use of the implicit representation. The algorithm is based on the fact, proven in the paper, that any involution of the surface comes from an involution of the parameter space (the real plane, in our case); therefore, by determining the latter, the former can be found. The algorithm has been implemented in the computer algebra system Maple 17. Evidence of its efficiency for moderate degrees, examples and a complexity analysis are also given

    The unexpected resurgence of Weyl geometry in late 20-th century physics

    Full text link
    Weyl's original scale geometry of 1918 ("purely infinitesimal geometry") was withdrawn by its author from physical theorizing in the early 1920s. It had a comeback in the last third of the 20th century in different contexts: scalar tensor theories of gravity, foundations of gravity, foundations of quantum mechanics, elementary particle physics, and cosmology. It seems that Weyl geometry continues to offer an open research potential for the foundations of physics even after the turn to the new millennium.Comment: Completely rewritten conference paper 'Beyond Einstein', Mainz Sep 2008. Preprint ELHC (Epistemology of the LHC) 2017-02, 92 pages, 1 figur
    corecore