1,416 research outputs found

    Symmetry, Invariance and Ontology in Physics and Statistics

    Get PDF
    This paper has three main objectives: (a) Discuss the formal analogy between some important symmetry-invariance arguments used in physics, probability and statistics. Specifically, we will focus on Noether’s theorem in physics, the maximum entropy principle in probability theory, and de Finetti-type theorems in Bayesian statistics; (b) Discuss the epistemological and ontological implications of these theorems, as they are interpreted in physics and statistics. Specifically, we will focus on the positivist (in physics) or subjective (in statistics) interpretations vs. objective interpretations that are suggested by symmetry and invariance arguments; (c) Introduce the cognitive constructivism epistemological framework as a solution that overcomes the realism-subjectivism dilemma and its pitfalls. The work of the physicist and philosopher Max Born will be particularly important in our discussion

    Generalism and the Metaphysics of Ontic Structural Realism

    Get PDF
    Ontic structural realism (OSR) claims that all there is to the world is structure. But how can this slogan be turned into a worked-out metaphysics? Here I consider one potential answer: a metaphysical framework known as generalism (Dasgupta, 2009, 2016). According to the generalist, the most fundamental description of the world is not given in terms of individuals bearing properties, but rather, general facts about which states of affairs obtain. However, I contend that despite several apparent similarities between the positions, generalism is unable to capture the two main motivations for OSR. I suggest instead that OSR should be construed as a meta-metaphysical position

    A Realist Interpretation of the Quantum Measurement Problem

    Full text link
    A new, realist interpretation of the quantum measurement processes is given. In this scenario a quantum measurement is a non-equilibrium phase transition in a ``resonant cavity'' formed by the entire physical universe including all its material and energy content. Both the amplitude and the phase of the quantum mechanical wavefunction acquire substantial meaning in this picture, and the probabilistic element is removed from the foundations of quantum mechanics, its apparent presence in the quantum measurement process is viewed as a result of the sensitive dependence on initial/boundary conditions of the non-equilibrium phase transitions in a many degree-of-freedom system. The implications of adopting this realist ontology to the clarification and resolution of lingering issues in the foundations of quantum mechanics, such as wave-particle duality, Heisenberg's uncertainty relation, Schrodinger's Cat paradox, first and higher order coherence of photons and atoms, virtual particles, the existence of commutation relations and quantized behavior, etc., are also presented.Comment: 8 pages, submiited to the Proceedings of the international conference "Albert Einstein Century", held July 2005 in Paris, Franc

    Symmetry, Structure and the Constitution of Objects

    Get PDF
    In this paper I focus on the impact on structuralism of the quantum treatment of objects in terms of symmetry groups and, in particular, on the question as to how we might eliminate, or better, reconceptualise such objects in structural terms. With regard to the former, both Cassirer and Eddington not only explicitly and famously tied their structuralism to the development of group theory but also drew on the quantum treatment in order to further their structuralist aims and here I sketch the relevant history with an eye on what lessons might be drawn. With regard to the latter, Ladyman has explicitly cited Castellani's work on the group-theoretical constitution of quantum objects and I indicate both how such an approach needs to be understood if it is to mesh with Ladyman's 'ontic' form of structural realism and how it might accommodate permutation symmetry through a consideration of Huggett's recent account

    On the Common Structure of Bohmian Mechanics and the Ghirardi-Rimini-Weber Theory

    Get PDF
    Bohmian mechanics and the Ghirardi-Rimini-Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schr\"odinger's equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about ``matter'' moving in space, represented by either particle trajectories, fields on space-time, or a discrete set of space-time points. The role of the wave function then is to govern the motion of the matter.Comment: 35 pages LaTeX, 1 figure; v4 minor additions, v2 major revisio

    Mechanisms in Dynamically Complex Systems

    Get PDF
    In recent debates mechanisms are often discussed in the context of ‘complex systems’ which are understood as having a complicated compositional structure. I want to draw the attention to another, radically different kind of complex system, in fact one that many scientists regard as the only genuine kind of complex system. Instead of being compositionally complex these systems rather exhibit highly non-trivial dynamical patterns on the basis of structurally simple arrangements of large numbers of non-linearly interacting constituents. The characteristic dynamical patterns in what I call “dynamically complex systems” arise from the interaction of the system’s parts largely irrespective of many properties of these parts. Dynamically complex systems can exhibit surprising statistical characteristics, the robustness of which calls for an explanation in terms of underlying generating mechanisms. However, I want to argue, dynamically complex systems are not sufficiently covered by the available conceptions of mechanisms. I will explore how the notion of a mechanism has to be modified to accommodate this case. Moreover, I will show under which conditions the widespread, if not inflationary talk about mechanisms in (dynamically) complex systems stretches the notion of mechanisms beyond its reasonable limits and is no longer legitimate
    • 

    corecore