4,843 research outputs found

    Dependent randomized rounding for clustering and partition systems with knapsack constraints

    Full text link
    Clustering problems are fundamental to unsupervised learning. There is an increased emphasis on fairness in machine learning and AI; one representative notion of fairness is that no single demographic group should be over-represented among the cluster-centers. This, and much more general clustering problems, can be formulated with "knapsack" and "partition" constraints. We develop new randomized algorithms targeting such problems, and study two in particular: multi-knapsack median and multi-knapsack center. Our rounding algorithms give new approximation and pseudo-approximation algorithms for these problems. One key technical tool, which may be of independent interest, is a new tail bound analogous to Feige (2006) for sums of random variables with unbounded variances. Such bounds are very useful in inferring properties of large networks using few samples

    On a generalization of iterated and randomized rounding

    Get PDF
    We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisfies the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems where iterated rounding has been useful

    Multireference Alignment using Semidefinite Programming

    Full text link
    The multireference alignment problem consists of estimating a signal from multiple noisy shifted observations. Inspired by existing Unique-Games approximation algorithms, we provide a semidefinite program (SDP) based relaxation which approximates the maximum likelihood estimator (MLE) for the multireference alignment problem. Although we show that the MLE problem is Unique-Games hard to approximate within any constant, we observe that our poly-time approximation algorithm for the MLE appears to perform quite well in typical instances, outperforming existing methods. In an attempt to explain this behavior we provide stability guarantees for our SDP under a random noise model on the observations. This case is more challenging to analyze than traditional semi-random instances of Unique-Games: the noise model is on vertices of a graph and translates into dependent noise on the edges. Interestingly, we show that if certain positivity constraints in the SDP are dropped, its solution becomes equivalent to performing phase correlation, a popular method used for pairwise alignment in imaging applications. Finally, we show how symmetry reduction techniques from matrix representation theory can simplify the analysis and computation of the SDP, greatly decreasing its computational cost
    • ā€¦
    corecore