Clustering problems are fundamental to unsupervised learning. There is an
increased emphasis on fairness in machine learning and AI; one representative
notion of fairness is that no single demographic group should be
over-represented among the cluster-centers. This, and much more general
clustering problems, can be formulated with "knapsack" and "partition"
constraints. We develop new randomized algorithms targeting such problems, and
study two in particular: multi-knapsack median and multi-knapsack center. Our
rounding algorithms give new approximation and pseudo-approximation algorithms
for these problems. One key technical tool, which may be of independent
interest, is a new tail bound analogous to Feige (2006) for sums of random
variables with unbounded variances. Such bounds are very useful in inferring
properties of large networks using few samples