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Recently, de Klerk, van Maaren and Warners [10] investigated a relaxation of 3-SAT via
semidefinite programming. Thus a 3-SAT formula is relaxed to a semidefinite feasibility prob-
lem. If the feasibility problem is infeasible then a certificate of unsatisfiability of the formula
is obtained. The authors proved that this approach is exact for several polynomially solvable
classes of logical formulae, including 2-SAT, pigeonhole formulae and mutilated chessboard
formulae. In this paper we further explore this approach, and investigate the strength of the
relaxation on (2+p)-SAT formulae, i.e., formulae with a fraction p of 3-clauses and a fraction
(1−p) of 2-clauses. In the first instance, we provide an empirical computational evaluation of
our approach. Secondly, we establish approximation guarantees of randomized and determin-
istic rounding schemes when the semidefinite feasibility problem is feasible, and also present
computational results for the rounding schemes. In particular, we do a numerical and theoret-
ical comparison of this relaxation and the stronger relaxation by Karloff and Zwick [15].

Keywords: approximation algorithms, satisfiability, semidefinite programming, randomized
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1. Introduction

Recently, de Klerk et al. [10] proposed a relaxation of the satisfiability problem
(SAT) to a semidefinite programming (SDP) feasibility problem. The authors showed
that this approach – called the gap relaxation – is exact1 for certain classes of polynomi-
ally solvable formulae including:

• 2-SAT;

• unsatisfiable formulae from graph colouring instances where clique constraints imply
unsatisfiability;

• pigeonhole formulae;

• ‘mutilated chessboard’ formulae.

The last two classes of formulae are special cases of a general class of infeasible as-
signment problems for which the gap relaxation is exact. Pigeonhole formulae are of

1 We call the relaxation exact if it is feasible if and only if the formula is satisfiable.
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independent interest, since their solution by the resolution algorithm requires exponen-
tial time [12].2

Semidefinite programming relaxations of combinatorial optimization problems
dates back to work by Lovász [16] in the seventies.

The gap relaxation in [10] is closely related to the types of MAX-SAT relaxations
studied by Karloff and Zwick [15], Zwick [23], and Halperin and Zwick [13]. The work
of these authors in turn employs the ideas of semidefinite approximation algorithms and
associated randomized rounding, as introduced in the seminal work of Goemans and
Williamson [11] on approximation algorithms for the MAX-CUT and other problems.

The gap relaxation is by no means the strongest possible relaxation of SAT formu-
lae using SDP. In fact, Lovász and Schrijver have shown how to obtain exact descriptions
of the feasible integer polytope of the maximum stable set problem. (Recall that there is
a simple polynomial time reduction from the maximum stable set problem to SAT.) Of
course, the resulting SDP’s may be exponentially large in the original problem size.

The gap relaxation should therefore be seen as a trade-off between practically im-
plementable and theoretically strong relaxations. Only one constraint is introduced per
clause, and these constraints have special (rank one) structure in the resulting semidefi-
nite feasibility problem, which can be exploited by interior point algorithms. By contrast,
the 7/8 MAX-3-SAT relaxation Karloff and Zwick requires 3 constraints per 3-clause,
and these constraints do not have rank one in the resulting SDP. We will show that – as
might be expected – the gap relaxation can be solved more quickly, but that the relaxation
by Karloff and Zwick can detect unsatisfiability in more cases.

A disadvantage of the gap (and Karloff–Zwick) relaxation is that it is always fea-
sible for 3-SAT formulae if there are no 2-clauses present. In other words, in order to
detect unsatisfiability, 2-clauses must be present. For this reason (2 + p)-SAT formulae
provide a natural test environment for this approach.

If the gap relaxation is feasible, then one can still use a solution of the relaxation
in an attempt to generate a truth assignment for the SAT-formula in question (round-
ing schemes). In this paper we will also explore the theoretical properties and practical
performance of some rounding schemes. Thus we show that the best rounding scheme
satisfies roughly 91% of the 2-clauses and 70% of the 3-clauses (in expectation). This
is worse than the 7/8 guarantee which is obtained from rounding the Karloff–Zwick re-
laxation, but we show that rounding the gap relaxation can be useful in generating truth
assignments in practice.

Outline

This paper is organized as follows. In section 2 we review how CNF formulae
may be relaxed to semidefinite feasibility problems. We discuss the issues involved in
solving these relaxations using interior point methods in section 3. This is followed by
some numerical results on detecting unsatisfiability in (2+p)-SAT formulae in section 4.

2 Polynomial time cutting plane proofs are known for the pigeonhole formulae [6], but the gap relaxation
solves these formulae in a fully automated way, without the need for problem-dependent cutting planes.
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We consider the situation where the gap relaxation is feasible in section 5, and derive
performance guarantees for different rounding schemes which aim at constructing truth
assignments. Finally, we present some numerical results for the rounding schemes in
section 7, as well as a numerical comparison of the relative strength of the gap and
Karloff–Zwick relaxations.

2. Boolean quadratic clause representations and their relaxations

We consider the satisfiability problem in conjunctive normal form (CNF). A propo-
sitional formula � in CNF is a conjunction of clauses, where each clause Ci is a disjunc-
tion of literals. Each literal is an atomic proposition (or logical variable) or its negation
(¬). Let m be the number of clauses and n the number of atomic propositions. A clausal
propositional formula is denoted as � = C1 ∧ C2 ∧ · · · ∧ Cm, where each clause Ci is
of the form

Ci =
∨
j∈Ii

pj ∨
∨
j∈Ji

¬pj,

with Ii, Ji ⊆ {1, . . . , n} disjoint. The satisfiability (SAT) problem of propositional logic
is to determine whether or not an assignment of truth values to the logical variables exists
such that each clause evaluates to true (i.e., one of its literals is true) and thus the formula
is true. The MAX-k-SAT problem is to find the maximum number of clauses which can
be simultaneously satisfied, where the clause length is at most k; the MAX-{k}-SAT
problem involves clauses of length exactly k. Similar definitions hold for k-SAT and
{k}-SAT.

We will also refer to (2 + p)-SAT (0 � p � 1), which is the class of 3-SAT
formulae where a fraction (1 −p) of the clauses are 2-clauses and the remaining clauses
are 3-clauses. Finally, we will call α = m/n the clause/variable ratio.

Associating a {−1, 1}-variable xi with each logical variable pi , a clause Ck can be
written as a linear inequality in the following way.

Ck(x) =
∑
i∈Ik

xi −
∑
j∈Jk

xj � 2 − �(Ck), (1)

where �(Ck) denotes the length of clause k, i.e., �(Ck) = |Ik∪Jk|. Using matrix notation,
the integer linear programming formulation of the satisfiability problem can be stated as

find x ∈ {−1, 1}n such that Ax � r.

The matrix A ∈ R
m×n is called the clause-variable matrix. We have that aTk x =

Ck(x), where aTk denotes the kth row of A. Obviously, aki = 1 if i ∈ Ik, aki = −1 if
i ∈ Jk, while aki = 0 for any i /∈ Ik ∪ Jk. Furthermore, rk = 2 − �(Ck).

In order to apply a SDP relaxation to a CNF formula, one must represent each
clause as a Boolean quadratic (in)equality. Subsequently, one or more quadratic
(in)equalities are formulated for a given clause Cj which are satisfied if x corresponds
to a truth assignment for clause Cj .



288 E. de Klerk, H. van Maaren / On semidefinite programming relaxations of (2 + p)-SAT

There are many ways to do this. Karloff and Zwick [15] derived a set of seven
valid quadratic functions which represent all possible valid quadratic inequalities for
3-clauses (by taking linear combinations of the seven inequalities); see also [10]. As an
example, let us consider the clause p1 ∨p2 ∨p3. All valid quadratic inequalities for this
clause are nonnegative aggregations of the following seven quadratic inequalities:

x1x2 + x1x3 − x2 − x3 � 0,

x1x2 + x2x3 − x1 − x3 � 0,

x1x3 + x2x3 − x1 − x2 � 0,

−x1x2 − x1x3 − x2x3 − 1 � 0,

−x1x2 + x1 + x2 − 1 � 0,

−x1x3 + x1 + x3 − 1 � 0,

−x2x3 + x2 + x3 − 1 � 0,

x1, x2, x3 ∈ {−1, 1}.
The analogous inequalities for other possible 3-clauses are obtained by replacing

xi by −xi if pi appears negated in the clause.
More recently, Halperin and Zwick [13] derived a similar set of generic quadratic

inequalities for 4-clauses. Van Maaren and Warners [21,22] and de Klerk et al. [10]
considered so-called elliptic representations of clauses. For our example clause p1 ∨
p2 ∨ p3 the elliptic representation takes the form:

(x1 + x2 + x3 − 1)2 � 4, x1, x2, x3 ∈ {−1, 1}.
Using x2

i = 1 and simplifying we get

∑
i �=j

xixj −
3∑
i=1

xi � 0. (2)

This quadratic inequality is simply the sum of the first three of the seven generic inequal-
ities listed above. Karloff and Zwick [15] showed that by representing a 3-clause by the
first three inequalities a 7/8 approximation algorithm is obtained for MAX-3-SAT, by
using the Goemans–Williamson randomized rounding technique [11].

Let us assume that

xT Aix + 2bTi x + ci � 0, x ∈ {−1, 1}n (3)

is a valid Boolean quadratic representation of a clause Ci . In other words, (3) holds
if and only if x corresponds to a truth assignment for clause Ci . Equation (3) can be
rewritten as

Tr

[
Ai bi
bTi ci

][
xxT x

xT 1

]
� 0, x ∈ {−1, 1}n, (4)
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where ‘Tr’ denotes the trace operator. We can relax (4) to

Tr

[
Ai bi
bTi ci

] [
X y

yT 1

]
� 0, (5)

where X is now a symmetric n× n matrix which satisfies

X − yyT � 0, (6)

and Xjj = 1 (j = 1, . . . , n). Note that the entries Xij correspond to the products xixj
and yi corresponds to xi . Also note that (6) is equivalent to

[
X y

yT 1

]
� 0, (7)

by the Schur complement theorem.
We therefore have a general procedure by which we can relax a clause to one or

more linear matrix inequalities. The only non-mechanical step is to select which valid
quadratic (in)equalities will be used to represent each clause.

The gap relaxation

In this paper we consider the gap relaxation by de Klerk et al. [10] which uses the
inequalities of the type (2) for 3-clauses, and for the generic 2-clause

p1 ∨ p2

uses the valid quadratic equality

(x1 + x2 − 1)2 = 1.

Again, if p1 is negated, then x1 is replaced by −x1 in (8), etc. Simplifying using x2
i = 1

as before, we get

x1x2 − x1 − x2 = −1. (8)

In the relaxation the generic 2-clause p1 ∨p2 corresponds to a 3 × 3 principal submatrix
of the matrix in (7), namely, 

 1 X12 y1

X12 1 y2

y1 y2 1


 ,

and (8) implies

X12 −
2∑
i=1

yi = −1.
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Similarly, the generic 3-clause p1 ∨ p2 ∨ p3 corresponds to a 4 × 4 principal submatrix
of the matrix in (7), namely, 


1 X12 X13 y1

X12 1 X23 y2

X13 X23 1 y3

y1 y2 y3 1


 ,

and (2) implies

X12 +X13 +X23 −
3∑
i=1

yi � 0.

Note that the identity matrix is always feasible for the gap relaxation of {3}-SAT
formulae. This means that unsatisfiability can only be detected if 2-clauses are also
present.

Definition 2.1 (Gap relaxation). Formally, we can define the gap relaxation in terms of
the clause-variable matrix; for the gap relaxation, the parameters in (5) become

Ai = aia
T
i , bi = −ai, ci = −�(Ci)

(
�(Ci)− 2

)
, i = 1, . . . , m.

Moreover, for 2-clauses, the inequality sign in (5) becomes equality.

3. Implementational issues

The semidefinite feasibility problem resulting from the gap relaxation (or Karloff–
Zwick relaxation) may be solved using interior point methods. The most reliable way
of detecting infeasibility using interior point methods is via the technique of self-dual
embeddings. For a detailed discussion see De Klerk et al. [8,9]. The self-dual embed-
ding approach is implemented in the software SeDuMi by Sturm [20], which we used to
obtain the results presented in the next section.

The fact that the coefficient matrix in (5) has rank one for the gap relaxation can
be exploited by interior point methods and in particular by the dual-scaling method by
Benson et al. [4].

In order to give an indication of the computational times involved, we have listed
some CPU times in table 1 for the computation of the gap relaxation and the related
relaxation by Karloff and Zwick (K–Z) for (2+p)-SAT formulae with p = 0.5, α = 2.2
and the numbers of variables (n) ranging from 100 to 300. Computation was done on
a Pentium III (450 MHz) with SeDuMi 1.04 running under Matlab 5.3. The version
of the implementation by Benson et al. [4] which we used could only handle rank one
constraints, and was therefore not suitable to solve the K–Z relaxation.3

Note that the dual scaling method is faster on small formulae, but slower than
SeDuMi on the larger ones. The reason is that the number of interior point iterations

3 This method has now been extended to handle constraint matrices of all ranks (see [5]).
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Table 1
Typical CPU times (seconds) for solving the gap relaxation and the relax-
ation by Karloff–Zwick (K–Z) using two different interior point solvers.

# vars. Gap: SeDuMi Gap: Benson et al. K–Z: SeduMi

100 14.8 5.65 36.5
150 43.7 33.3 140
200 133 229 394
250 264 360 781
300 645 1088 1453

required by the dual scaling method grows quickly with the problem size (although the
time per iteration remains low compared to SeDuMi).

In our own experience the dual scaling method of Benson et al. [4] therefore does
not give superior performance on our feasibility problems at this time. However, at the
time of writing significant progress has been made with these methods by using a conju-
gate gradient method to solve the Newton system at each iteration [7]. This approach was
shown to be very promising for other combinatorial relaxations, like the MAX-CUT re-
laxation, where relaxations for problems with up to 14000 variables can be solved. Dual
scaling methods therefore remain a promising alternative.

4. Computational results: detecting unsatisfiability for (2 + p)-SAT

This section contains a selection of computational results we have obtained for
random (2 + p)-SAT formulae.

In particular, the following figures indicate the effectiveness of the relaxation in de-
tecting infeasibility in random (2+p)-SAT formulae; the actual fraction of unsatisfiable
formulae is plotted by a solid line as a function of the clause/variable ratio α for vari-
ous values of p. The dashed line indicates the fraction where unsatisfiability is detected
(where the gap relaxation is infeasible). Finally, the dash–dot line shows the fraction of
formulae where the 2-SAT part is already unsatisfiable. At least one hundred random
formulae were generated for each pair of values (α, p); if fewer than 20 of these for-
mulae were unsatisfiable for a given pair of (α, p), then more formulae were generated
until 20 unsatisfiable formulae had been found.

In figure 1 we consider p = 0.3 for formulae with 125 variables. Note that the
gap relaxation is quite successful at detecting unsatisfiability in this case. The fraction
of 3-clauses is increased to 1/2 in figure 2. Note that the success rate of the relaxation
now decreases, and this is even more noticeable in figure 3 where p = 0.7.

This trend is not surprising, since the relaxation approach is exact for 2-SAT yet
always feasible for 3-SAT. One would therefore expect the performance to worsen as
the fraction of 3-clauses increases. A positive aspect is that the fraction of unsatisfiable
formulae where unsatisfiability is detected is still significantly higher than the fraction
of unsatisfiable formulae where the 2-SAT part is already unsatisfiable.
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Figure 1. The fraction of formulae where unsatisfiability is detected as a function of the clause/variable
ratio α for p = 0.3.

Figure 2. The fraction of formulae where unsatisfiability is detected as a function of the clause/variable
ratio α for p = 0.5.



E. de Klerk, H. van Maaren / On semidefinite programming relaxations of (2 + p)-SAT 293

Figure 3. The fraction of formulae where unsatisfiability is detected as a function of the clause/variable
ratio α for p = 0.7.

In figure 4 we plot the failure rate of the gap relaxation approach as a function of p.
Here, we selected random formulae with 125 and 200 variables, respectively, such that
the clause/variable ratio α is as close as possible to the empirically observed threshold
value from [18].

The failure rate is defined as the number of unsatisfiable formulae where unsatis-
fiability is not detected as a fraction of the total number of unsatisfiable formulae. Note
that one sees a threshold behavior – the effectiveness of the gap relaxation decreases
rapidly after p ≈ 0.4.

Finally, we show a histogram (figure 5) which indicates the fraction of failures of
the relaxation as a function of α for formulae with 200 variables and p = 0.5. Note
that the largest failure rates coincide with the empirically observed threshold value of
α ≈ 2.1 [18]. Exact solution approaches for SAT usually experience difficulty with for-
mulae where α is close to the empirically observed threshold value [18]. It is interesting
to view the results in figure 5 in the light of some resent results on the ‘threshold’ be-
haviour of (2 + p)-SAT. In [18,19], extensive experiments on the threshold behaviour
of (2 + p)-SAT formulas are carried out and the results explained through an analogy
with properties of glassy or granular materials, as studied in statistical mechanics. It is
claimed from this analogy that the average (2 + p)-SAT formula behaves like a 2-SAT
formula below a certain value of p (approximately 0.4 ) and like a 3-SAT formula above
that value, with respect to computational costs (of resolution based methods used for
solving) and with respect to the nature of the phase transition.
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Figure 4. The failure rate of the gap relaxation approach as a function of p for random (2+p)-SAT formulae
with clause/variable ratio near the threshold value. Solid line: 125 variables, dashed line: 200 variables.

Figure 5. The fraction of failures (to detect unsatisfiability) as a function of the clause/variable ratio α for
p = 0.5. The vertical dashed line marks the observed threshold value from [19] for this class of formulae.
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More recently, Achlioptas et al. [1] have derived some rigorous bounds for the
phase transition: they prove that for p � 0.4, asymptotically, with probability 1 − o(1),
a random (2 + p)-SAT formula is satisfiable if and only if its 2-SAT part is satisfiable.
Moreover, they prove that this situation no longer holds for some value 0.4 < p < 0.695.

Our results (cf. figure 4), also show a ‘phase transition’: below 0.4 the gap re-
laxation method seems reliable, but above that value the fraction of failures rapidly in-
creases. The results in [1,18,19] suggest that this behaviour is to be expected for large
formulae. Experiments with large formulae are needed to confirm this, something which
is not currently within the current computational possibilities.

5. Rounding procedures

If the gap relaxation of a given formula is feasible, then one may use a feasible
solution of the relaxation in an attempt to generate a truth assignment for the formula
(if one exists). Moreover, it is possible to establish performance guarantees for such
‘rounding procedures’.

5.1. Deterministic rounding

Recall that the vector y in (7) gives a truth assignment if X, y are feasible in (5)
and X is a rank one matrix.

In general, X will not be a rank one solution, but one can still check whether the
rounded vector sign(y) yields a truth assignment.

We will refer to this heuristic as deterministic rounding. It was shown in [10] that
deterministic rounding satisfies each 2-clause, say C = pi ∨ pj , for which yi �= 0 or
yj �= 0 in the solution of the gap relaxation. The unresolved 2-clauses can subsequently
be satisfied in a trivial way (see [10] for details). In other words, deterministic rounding
can always be used to satisfy a fraction 1 − p of the clauses (namely the 2-clauses).

5.2. Randomized rounding with hyperplanes

Recall that the entry Xij in the matrix in (7) corresponds to the product xixj of
logical variables. In fact, we may write

Xij = vTi vj ,

where vi and vj are columns from the Choleski decomposition of the matrix in (7).
This shows that the product xixj is in fact relaxed to the inner product vTi vj , that

is, we associate a vector vi with each literal pi .
The vector y in (7) can similarly be seen as a vector of inner products:

yi = vTT vi,

where one can attach a special interpretation to the vector vT as ‘truth’ vector: in a rank
one solution, if vi = vT then pi is TRUE, and if vi = −vT then pi is FALSE.
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This interpretation suggests a rounding scheme (which was introduced by Karloff
and Zwick [15] as an extension of the ideas of Goemans and Williamson [11]):

1. Take the Choleski factorization of the matrix in (7).

2. Choose a random hyperplane through the origin.

3. If vi lies on the same side of the hyperplane as vT , then set pi to TRUE; otherwise set
pi to FALSE.

We will refer to this procedure as randomized rounding; this heuristic can be de-
randomized using the techniques in [17].

6. Approximation guarantees for the rounding schemes

In this section we give a review of the analysis required to establish performance
guarantees for the randomized rounding procedure. The relevant methodology is largely
due to Karloff and Zwick [15]; we give a self-contained presentation of their approach
here because we will use it to analyze a new type of rounding scheme in section 6.3.

6.1. Randomized rounding for 2-clauses

We again only consider the two clause p1 ∨ p2 without loss of generality. Let
the vectors v1, v2 be associated with the literals of p1 ∨ p2. The randomized rounding
procedure will fail to satisfy this clause if all three vectors v1, v2,−vT lie on the same
side of the random hyperplane (see figure 6).

In general, we want to know what the probability is that a set of given vectors lie
on the same side of a random hyperplane. The probability that two given unit vectors
v1, v2 lie on the same side of a random hyperplane is easy: it only depends on the angle

Figure 6. The situation where v1 and v2 are separated from vT by a random hyperplane.
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arccos(vT1 v2) between these vectors and is given by 1 − arccos(vT1 v2)/π [11]. One can
use this observation to treat the three vector case using inclusion–exclusion; this is done
in [15]. We present a different derivation here which can be generalized to more vectors.
The key is to consider the normal vector r to the randomized hyperplane. The clause
will not be satisfied if the three vectors all have a positive (or all have a negative) inner
product with r.

Note that the Gram matrix of v1, v2,−vT is the following matrix:

X̄2 :=

 1 X12 −y1

X12 1 −y2

−y1 −y2 1


 ,

and the gap relaxation requires

X12 −
2∑
i=1

yi = −1. (9)

The vectors v1, v2,−vT can be viewed as three points on the 2-dimensional unit
sphere

S2 := {
x ∈ R

3 | ‖x‖ = 1
}
,

and thus define a so-called spherical triangle (say S) in the space S2.
The associated dual spherical triangle is defined as

S∗ := {
r ∈ R

3: rT vi � 0(i = 1, 2), rT vT � 0
}

which, together with −1 × S∗ form the set of normal vectors for which all three vectors
lie on the same side of the associated plane.

The probability that the clause is not satisfied is therefore given by:

p(2) = 2
area(S∗)
area(S2)

= area(S∗)
2π

.

It is well known that the area of a spherical triangle is given by its angular excess4 [2].
The dihedral angels of S∗ are given in terms of the edge lengths of S (see, e.g., [2] and
equal (π − arccos(X12)), (π − arccos(−y1)), and (π − arccos(−y2)). It follows that the
angular excess (i.e., area) of S∗ is given by:

area(S∗)= ((
π − arccos(X12)

) + (
π − arccos(−y1)

) + (
π − arccos(−y2)

)) − π

= 2π − arccos(X12)− arccos(−y1)− arccos(−y2),

so that

p(2) = 1 − 1

2π

(
arccos(X12)+ arccos(−y1)+ arccos(−y2)

)
. (10)

4 The angular excess is the difference between the sum of the (dihedral) angles of the spherical triangle
and π .
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We are therefore interested in the optimization problem:

max
X̄2

p(2)

subject to X̄2 � 0 and (9).
Since p(2) is a strongly quasi-concave function of X̄2, and the feasible region is

convex, this optimization problem can therefore be solved to global optimality, because
each local optimum is also global in this case (see theorem 3.5.9 in [3]). The optimal
solution is given by

X̄2 =

 1 −1/3 −1/3

−1/3 1 −1/3
−1/3 −1/3 1


 ,

in which case the clause is satisfied by randomized rounding with probability 3/(2π)
arccos(−1/3) ≈ 0.91226, by (10).

6.2. Randomized rounding for 3-clauses

This analysis is perfectly analogous to the analysis of the 2-clause case, the only
complication being that the probability function is much more complicated.

Let the vectors v1, v2, v3 be associated with the literals of p1 ∨p2 ∨p3. As before,
the randomized rounding procedure will fail to satisfy this clause if all four vectors
v1, v2, v3,−vT lie on the same side of the random hyperplane.

What is the probability of this event? This question has been answered by Karloff
and Zwick [15]. Once again, we consider the normal vector r to the randomized hyper-
plane. The clause will not be satisfied if the four vectors all have a positive (or negative)
inner product with r.

Note that the Gram matrix of v1, v2, v3,−vT is the following matrix:

X̄3 :=




1 X12 X13 −y1

X12 1 X23 −y2

X13 X23 1 −y3

−y1 −y2 −y3 1


 , (11)

and that the gap relaxation requires

X12 +X13 +X23 −
3∑
i=1

yi � 0. (12)

The vectors v1, v2, v3,−vT can be viewed as four points on the 3-dimensional unit
hypersphere

S3 := {
x ∈ R

4 | ‖x‖ = 1
}
,

and thus define a so-called spherical tetrahedron (say S) in the space S3.



E. de Klerk, H. van Maaren / On semidefinite programming relaxations of (2 + p)-SAT 299

The associated dual spherical tetrahedron is defined as

S∗ := {
r ∈ R

4: rT vi � 0 (i = 1, . . . , 3), rT vT � 0
}

which, together with −S∗ form the set of normal vectors for which all four vectors lie
on the same side of the hyperplane.

The probability that the clause is not satisfied is therefore given by:

p(3) = 2
volume(S∗)
volume(S3)

.

The relative volume as a function of X̄3 is given by the following integral (see [2]):

volume(S∗)
volume(S3)

= 1√
det(X̄3)π4

∫ ∞

0
· · ·

∫ ∞

0
e−yT X̄−1

3 ydy1 · · · dy4.

In order to establish the worst-case performance for our relaxation we therefore have to
solve the following optimization problem

max
X̄3

p(3)

subject to X̄3 � 0 and (12).
The volume function cannot be written in closed form, but can be simplified to a

one dimensional integral [14] for spherical tetrahedra. Surprisingly, the gradient of the
volume function is explicitly known (see [2,15]).

The optimization problem we consider has a convex feasible region but the objec-
tive function (to be maximized) is not concave. It is therefore difficult to find the global
maximum, but it can be done due to the small problem size. We give only a sketch of
the proof here.5

• First show that the global optimal solution is not positive definite. Assuming the
contrary, the semidefiniteness constraints are redundant and only the single linear in-
equality (12) has to be considered. Since the gradient is known we can write down
the first order (necessary) optimality conditions. Using these conditions we can show
that the identity matrix is the only positive definite solution of the optimality condi-
tions. If this stationary point would be globally optimal, then we would have an 7/8
approximation guarantee. Unfortunately this is not the case.

• If the global optimal solution is only positive semidefinite, then the volume calcu-
lation reduces to calculating a triangular area on a sphere or a circular arch length.
Thus the analysis for a 3-clause reduces to that of 2-clause in this case.

5 Since we have only one linear constraint, namely (12), the analysis is simpler than for the Karloff–Zwick
relaxation (where there are three linear inequalities).
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After following this procedure, we find that the optimal solution is given by the
rank 2 matrix:

X̄3 =




1 1 −1/2 −1/2
1 1 −1/2 −1/2

−1/2 −1/2 1 1
−1/2 −1/2 1 1


 ,

in which case the clause is satisfied by randomized rounding with probability (1/π)
arccos(−1/2) = 2/3.6

Note, however, that the clause p1 ∨ p2 ∨ p3 would have been satisfied by deter-
ministic rounding of this solution. This suggests the idea of combining randomized and
deterministic rounding in order to improve the approximation guarantee.

6.3. Combined randomized and deterministic rounding

We consider the worst case for randomized rounding of 3-clauses which are not
satisfied by deterministic rounding. In other words, yi � 0 (i = 1, . . . , 3).

This corresponds to

X̄3 =




1 −0.75 −0.75 0.5
−0.75 1 1 0
−0.75 1 1 0

0.5 0 0 1


 ,

in which case the clause is satisfied by randomized rounding with probability ≈ 0.8025.
Now the reasoning is as follows: suppose that deterministic rounding satisfies a

fraction 1 − x of all the 3-clauses. Then the expected number of satisfied clauses via
subsequent randomized rounding is:

0.8025x + 2/3(1 − x).

It now follows that if x > 0.2934 then it is worthwhile to do randomized rounding. In
particular, we can always obtain an 1 − x > 0.7066 approximation guarantee. This is a
little better than the 2/3 obtained if one only does randomized rounding.

We state this result as a theorem.

Theorem 6.1. Let an (2 + p)-SAT formula be given for which the gap relaxation is
feasible. Either the randomized or the deterministic rounding scheme satisfies a fraction
of at least

max
{
1 − p, 0.7066p + 0.91226(1 − p)

}
of the clauses.

6 We wish to stress that it was not obvious a priori that the approximation guarantee for the gap relaxation
would be strictly worse than 7/8. Our analysis therefore shows that one cannot simplify the Karloff–Zwick
relaxation to the gap relaxation and still retain a 7/8 approximation algorithm.



E. de Klerk, H. van Maaren / On semidefinite programming relaxations of (2 + p)-SAT 301

Note that this guarantee is significantly worse than the (optimal) 7/8 guarantee
of Karloff and Zwick [15], showing that the gap relaxation is indeed weaker than the
relaxation in [15].

7. Computational results for a combined procedure

We now show computational results where we do the following for a given
(2 + p)-SAT formula.

1. Check if the gap relaxation is feasible; if not, then a certificate of unsatisfiability is
obtained – STOP; else go to step 2.

2. Perform the rounding schemes described in the previous section. If a truth assignment
is obtained, STOP; else go to step 3.

3. Check if the Karloff–Zwick relaxation is feasible; if not, then a certificate of unsatis-
fiability is obtained – STOP.

We wish to see how useful such a combined approach is. In particular, we wish to
see how often the Karloff–Zwick relaxation detects unsatisfiability when the gap relax-
ation does not.

The results are presented as pie-charts in figures 7–11 for 200 random instances of
(2 + p)-SAT with p = 0.3, 0.4, 0.5, 0.6, 0.7. The clause-variable ratio α is chosen near
the threshold value for each value of p. As a consequence about half of the 200 formulae
are unsatisfiable for each value of p. The number of variables n is 125. ‘K–Z’ stand for
the Karloff–Zwick relaxation, and ‘GAP’ for the gap relaxation.

It is clear from the figures that both the relaxations and the rounding procedure are
very reliable for a = 0.3 and α = 0.4. Note that the K–Z relaxation is only slightly
better than the gap relaxation at detecting unsatisfiability in these cases.

For p = 0.5 the picture changes. Already 12% of the formulae cannot be solved,
and the K–Z relaxation detects unsatisfiability in 6% more formulae than the gap relax-
ation. For p = 0.6 and p = 0.7 these trends are further amplified: for p = 0.7 the

Figure 7. Computational results for (2 + p)-SAT formulae with n = 125, p = 0.3 and α = 1.74.
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Figure 8. Computational results for (2 + p)-SAT formulae with n = 125, p = 0.4 and α = 1.94.

Figure 9. Computational results for (2 + p)-SAT formulae with n = 125, p = 0.5 and α = 2.18.

Figure 10. Computational results for (2 + p)-SAT formulae with n = 125, p = 0.6 and α = 2.47.



E. de Klerk, H. van Maaren / On semidefinite programming relaxations of (2 + p)-SAT 303

Figure 11. Computational results for (2 + p)-SAT formulae with n = 125, p = 0.7 and α = 2.82.

K–Z approach detects unsatisfiability of an additional 12% of the formulae. However,
in all fairness one should note that both the K–Z and gap approaches have a high failure
rate for p = 0.7 (about half the formulae are unsatisfiable). Also, the rounding scheme
becomes less efficient for larger p, as one may expect.

8. Conclusions and future research

In this paper we have studied the strength of the semidefinite programming re-
laxation of de Klerk et al. [10] on (2 + p)-SAT formulae, i.e., 3-SAT formulae with a
fraction p of 3-clauses and a fraction (1 −p) of 2-clauses. Thus a given logical formula
is relaxed to a semidefinite feasibility problem. If the feasibility problem is infeasi-
ble, a certificate of unsatisfiability is obtained. The resulting semidefinite programming
problem is computationally more attractive than the stronger relaxation by Karloff and
Zwick [15] (see table 1). However, the latter method detects unsatisfiability for more in-
stances than the gap relaxation does. This suggests a combined approach where cutting
planes corresponding to the Karloff–Zwick relaxation are added to the gap relaxation, if
necessary.

Numerical experiments on random instances show that the gap relaxation is quite
useful in detecting unsatisfiability if the value of p is small, but becomes less so as p
approaches unity. The approach also has a higher failure rate for formulae where the
clause/variable ratio is close to the observed threshold values. For p � 0.4 the stronger
relaxation of Karloff and Zwick does not perform significantly better. For p � 0.5 the
latter method performs notably better than the gap relaxation, but then the failure rate is
high for both approaches.

The gap relaxation can currently be solved using interior point methods for for-
mulae with a few hundred variables and clauses. It is a topic for future research to
better exploit sparsity in these methods; in particular, the potential use of dual scaling as
opposed to primal–dual methods seems promising.
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Two rounding heuristics were analysed for the case where the relaxation is feasi-
ble, namely the randomized rounding of Goemans–Williamson [11], and a deterministic
rounding scheme. It was shown that – by using both heuristics and taking the best solu-
tion – a fraction of at least max{1−p, 0.7066p+0.91226(1−p)} clauses are satisfied (in
expectation). This is worse than the 7/8 rounding scheme for the relaxation by Karloff
and Zwick [15], but numerical tests show that the rounding scheme analysed here is
useful in practice for low values of p (p � 0.4).
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