2,931 research outputs found

    The Broadest Necessity

    Get PDF
    In this paper the logic of broad necessity is explored. Definitions of what it means for one modality to be broader than another are formulated, and it is proven, in the context of higher-order logic, that there is a broadest necessity, settling one of the central questions of this investigation. It is shown, moreover, that it is possible to give a reductive analysis of this necessity in extensional language. This relates more generally to a conjecture that it is not possible to define intensional connectives from extensional notions. This conjecture is formulated precisely in higher-order logic, and concrete cases in which it fails are examined. The paper ends with a discussion of the logic of broad necessity. It is shown that the logic of broad necessity is a normal modal logic between S4 and Triv, and that it is consistent with a natural axiomatic system of higher-order logic that it is exactly S4. Some philosophical reasons to think that the logic of broad necessity does not include the S5 principle are given

    Linear logic for constructive mathematics

    Full text link
    We show that numerous distinctive concepts of constructive mathematics arise automatically from an interpretation of "linear higher-order logic" into intuitionistic higher-order logic via a Chu construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of classical concepts using the choice between multiplicative and additive linear connectives. Linear logic thus systematically "constructivizes" classical definitions and deals automatically with the resulting bookkeeping, and could potentially be used directly as a basis for constructive mathematics in place of intuitionistic logic.Comment: 39 page

    Abstracta and Possibilia: Modal Foundations of Mathematical Platonism

    Get PDF
    This paper aims to provide modal foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by Hale and Wright and examined in Hale (2013); and demonstrate how a two-dimensional approach to the epistemology of mathematics is consistent with Hale and Wright's notion of there being non-evidential epistemic entitlement rationally to trust that abstraction principles are true. A choice point that I flag is that between availing of intensional or hyperintensional semantics. The hyperintensional semantic approach that I advance is a topic-sensitive epistemic two-dimensional truthmaker semantics. Epistemic and metaphysical states and possibilities may thus be shown to play a constitutive role in vindicating the reality of mathematical objects and truth, and in providing a conceivability-based route to the truth of abstraction principles as well as other axioms and propositions in mathematics
    corecore