3,093 research outputs found

    Connectivity of confined 3D Networks with Anisotropically Radiating Nodes

    Get PDF
    Nodes in ad hoc networks with randomly oriented directional antenna patterns typically have fewer short links and more long links which can bridge together otherwise isolated subnetworks. This network feature is known to improve overall connectivity in 2D random networks operating at low channel path loss. To this end, we advance recently established results to obtain analytic expressions for the mean degree of 3D networks for simple but practical anisotropic gain profiles, including those of patch, dipole and end-fire array antennas. Our analysis reveals that for homogeneous systems (i.e. neglecting boundary effects) directional radiation patterns are superior to the isotropic case only when the path loss exponent is less than the spatial dimension. Moreover, we establish that ad hoc networks utilizing directional transmit and isotropic receive antennas (or vice versa) are always sub-optimally connected regardless of the environment path loss. We extend our analysis to investigate boundary effects in inhomogeneous systems, and study the geometrical reasons why directional radiating nodes are at a disadvantage to isotropic ones. Finally, we discuss multi-directional gain patterns consisting of many equally spaced lobes which could be used to mitigate boundary effects and improve overall network connectivity.Comment: 12 pages, 10 figure

    Undirected Connectivity of Sparse Yao Graphs

    Full text link
    Given a finite set S of points in the plane and a real value d > 0, the d-radius disk graph G^d contains all edges connecting pairs of points in S that are within distance d of each other. For a given graph G with vertex set S, the Yao subgraph Y_k[G] with integer parameter k > 0 contains, for each point p in S, a shortest edge pq from G (if any) in each of the k sectors defined by k equally-spaced rays with origin p. Motivated by communication issues in mobile networks with directional antennas, we study the connectivity properties of Y_k[G^d], for small values of k and d. In particular, we derive lower and upper bounds on the minimum radius d that renders Y_k[G^d] connected, relative to the unit radius assumed to render G^d connected. We show that d=sqrt(2) is necessary and sufficient for the connectivity of Y_4[G^d]. We also show that, for d = 2/sqrt(3), Y_3[G^d] is always connected. Finally, we show that Y_2[G^d] can be disconnected, for any d >= 1.Comment: 7 pages, 11 figure

    Connectivity of Graphs Induced by Directional Antennas

    Full text link
    This paper addresses the problem of finding an orientation and a minimum radius for directional antennas of a fixed angle placed at the points of a planar set S, that induce a strongly connected communication graph. We consider problem instances in which antenna angles are fixed at 90 and 180 degrees, and establish upper and lower bounds for the minimum radius necessary to guarantee strong connectivity. In the case of 90-degree angles, we establish a lower bound of 2 and an upper bound of 7. In the case of 180-degree angles, we establish a lower bound of sqrt(3) and an upper bound of 1+sqrt(3). Underlying our results is the assumption that the unit disk graph for S is connected.Comment: 8 pages, 10 figure

    Enhancing coverage and reducing power consumption in peer-to-peer networks through airborne relaying

    Get PDF

    Signatures of exciton coupling in paired nanoemitters

    Get PDF
    An exciton formed by the delocalized electronic excitation of paired nanoemitters is interpreted in terms of the electromagnetic emission of the pair and their mutual coupling with a photodetector. A formulation directly tailored for fluorescence detection is identified, giving results which are strongly dependent on geometry and selection rules. Signature symmetric and antisymmetric combinations are analyzed and their distinctive features identified

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Bounded-Angle Spanning Tree: Modeling Networks with Angular Constraints

    Full text link
    We introduce a new structure for a set of points in the plane and an angle α\alpha, which is similar in flavor to a bounded-degree MST. We name this structure α\alpha-MST. Let PP be a set of points in the plane and let 0<α2π0 < \alpha \le 2\pi be an angle. An α\alpha-ST of PP is a spanning tree of the complete Euclidean graph induced by PP, with the additional property that for each point pPp \in P, the smallest angle around pp containing all the edges adjacent to pp is at most α\alpha. An α\alpha-MST of PP is then an α\alpha-ST of PP of minimum weight. For α<π/3\alpha < \pi/3, an α\alpha-ST does not always exist, and, for απ/3\alpha \ge \pi/3, it always exists. In this paper, we study the problem of computing an α\alpha-MST for several common values of α\alpha. Motivated by wireless networks, we formulate the problem in terms of directional antennas. With each point pPp \in P, we associate a wedge WpW_p of angle α\alpha and apex pp. The goal is to assign an orientation and a radius rpr_p to each wedge WpW_p, such that the resulting graph is connected and its MST is an α\alpha-MST. (We draw an edge between pp and qq if pWqp \in W_q, qWpq \in W_p, and pqrp,rq|pq| \le r_p, r_q.) Unsurprisingly, the problem of computing an α\alpha-MST is NP-hard, at least for α=π\alpha=\pi and α=2π/3\alpha=2\pi/3. We present constant-factor approximation algorithms for α=π/2,2π/3,π\alpha = \pi/2, 2\pi/3, \pi. One of our major results is a surprising theorem for α=2π/3\alpha = 2\pi/3, which, besides being interesting from a geometric point of view, has important applications. For example, the theorem guarantees that given any set PP of 3n3n points in the plane and any partitioning of the points into nn triplets, one can orient the wedges of each triplet {\em independently}, such that the graph induced by PP is connected. We apply the theorem to the {\em antenna conversion} problem
    corecore