10,761 research outputs found

    Computational methods in algebra and analysis

    Get PDF
    This paper describes some applications of Computer Algebra to Algebraic Analysis also known as D-module theory, i.e. the algebraic study of the systems of linear partial differential equations. Gröbner bases for rings of linear differential operators are the main tools in the field. We start by giving a short review of the problem of solving systems of polynomial equations by symbolic methods. These problems motivate some of the later developed subjects.Ministerio de Ciencia y TecnologíaJunta de Andalucí

    Multiple Factorizations of Bivariate Linear Partial Differential Operators

    Full text link
    We study the case when a bivariate Linear Partial Differential Operator (LPDO) of orders three or four has several different factorizations. We prove that a third-order bivariate LPDO has a first-order left and right factors such that their symbols are co-prime if and only if the operator has a factorization into three factors, the left one of which is exactly the initial left factor and the right one is exactly the initial right factor. We show that the condition that the symbols of the initial left and right factors are co-prime is essential, and that the analogous statement "as it is" is not true for LPDOs of order four. Then we consider completely reducible LPDOs, which are defined as an intersection of principal ideals. Such operators may also be required to have several different factorizations. Considering all possible cases, we ruled out some of them from the consideration due to the first result of the paper. The explicit formulae for the sufficient conditions for the complete reducibility of an LPDO were found also

    Composing and Factoring Generalized Green's Operators and Ordinary Boundary Problems

    Full text link
    We consider solution operators of linear ordinary boundary problems with "too many" boundary conditions, which are not always solvable. These generalized Green's operators are a certain kind of generalized inverses of differential operators. We answer the question when the product of two generalized Green's operators is again a generalized Green's operator for the product of the corresponding differential operators and which boundary problem it solves. Moreover, we show that---provided a factorization of the underlying differential operator---a generalized boundary problem can be factored into lower order problems corresponding to a factorization of the respective Green's operators. We illustrate our results by examples using the Maple package IntDiffOp, where the presented algorithms are implemented.Comment: 19 page

    Can Computer Algebra be Liberated from its Algebraic Yoke ?

    Full text link
    So far, the scope of computer algebra has been needlessly restricted to exact algebraic methods. Its possible extension to approximate analytical methods is discussed. The entangled roles of functional analysis and symbolic programming, especially the functional and transformational paradigms, are put forward. In the future, algebraic algorithms could constitute the core of extended symbolic manipulation systems including primitives for symbolic approximations.Comment: 8 pages, 2-column presentation, 2 figure

    Gr\"obner Bases and Generation of Difference Schemes for Partial Differential Equations

    Full text link
    In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gr\"obner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gr\"obner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA
    corecore