3,565 research outputs found

    PVT-Robust CMOS Programmable Chaotic Oscillator: Synchronization of Two 7-Scroll Attractors

    Get PDF
    Designing chaotic oscillators using complementary metal-oxide-semiconductor (CMOS) integrated circuit technology for generating multi-scroll attractors has been a challenge. That way, we introduce a current-mode piecewise-linear (PWL) function based on CMOS cells that allow programmable generation of 2–7-scroll chaotic attractors. The mathematical model of the chaotic oscillator designed herein has four coefficients and a PWL function, which can be varied to provide a high value of the maximum Lyapunov exponent. The coefficients are implemented electronically by designing operational transconductance amplifiers that allow programmability of their transconductances. Design simulations of the chaotic oscillator are provided for the 0.35μ m CMOS technology. Post-layout and process–voltage–temperature (PVT) variation simulations demonstrate robustness of the multi-scroll chaotic attractors. Finally, we highlight the synchronization of two seven-scroll attractors in a master–slave topology by generalized Hamiltonian forms and observer approach. Simulation results show that the synchronized CMOS chaotic oscillators are robust to PVT variations and are suitable for chaotic secure communication applications.Universidad Autónoma de Tlaxcala CACyPI-UATx-2017Program to Strengthen Quality in Educational Institutions C/PFCE-2016-29MSU0013Y-07-23National Council for Science and Technology 237991 22284

    Consequences of nonclassical measurement for the algorithmic description of continuous dynamical systems

    Get PDF
    Continuous dynamical systems intuitively seem capable of more complex behavior than discrete systems. If analyzed in the framework of the traditional theory of computation, a continuous dynamical system with countably many quasistable states has at least the computational power of a universal Turing machine. Such an analysis assumes, however, the classical notion of measurement. If measurement is viewed nonclassically, a continuous dynamical system cannot, even in principle, exhibit behavior that cannot be simulated by a universal Turing machine

    Socionics: Sociological Concepts for Social Systems of Artificial (and Human) Agents

    Get PDF
    Socionics is an interdisciplinary approach with the objective to use sociological knowledge about the structures, mechanisms and processes of social interaction and social communication as a source of inspiration for the development of multi-agent systems, both for the purposes of engineering applications and of social theory construction and social simulation. The approach has been spelled out from 1998 on within the Socionics priority program funded by the German National research foundation. This special issue of the JASSS presents research results from five interdisciplinary projects of the Socionics program. The introduction gives an overview over the basic ideas of the Socionics approach and summarizes the work of these projects.Socionics, Sociology, Multi-Agent Systems, Artificial Social Systems, Hybrid Systems, Social Simulation

    The Non-linear Dynamics of Meaning-Processing in Social Systems

    Full text link
    Social order cannot be considered as a stable phenomenon because it contains an order of reproduced expectations. When the expectations operate upon one another, they generate a non-linear dynamics that processes meaning. Specific meaning can be stabilized, for example, in social institutions, but all meaning arises from a horizon of possible meanings. Using Luhmann's (1984) social systems theory and Rosen's (1985) theory of anticipatory systems, I submit equations for modeling the processing of meaning in inter-human communication. First, a self-referential system can use a model of itself for the anticipation. Under the condition of functional differentiation, the social system can be expected to entertain a set of models; each model can also contain a model of the other models. Two anticipatory mechanisms are then possible: one transversal between the models, and a longitudinal one providing the modeled systems with meaning from the perspective of hindsight. A system containing two anticipatory mechanisms can become hyper-incursive. Without making decisions, however, a hyper-incursive system would be overloaded with uncertainty. Under this pressure, informed decisions tend to replace the "natural preferences" of agents and an order of cultural expectations can increasingly be shaped

    On Matching, and Even Rectifying, Dynamical Systems through Koopman Operator Eigenfunctions

    Full text link
    Matching dynamical systems, through different forms of conjugacies and equivalences, has long been a fundamental concept, and a powerful tool, in the study and classification of nonlinear dynamic behavior (e.g. through normal forms). In this paper we will argue that the use of the Koopman operator and its spectrum is particularly well suited for this endeavor, both in theory, but also especially in view of recent data-driven algorithm developments. We believe, and document through illustrative examples, that this can nontrivially extend the use and applicability of the Koopman spectral theoretical and computational machinery beyond modeling and prediction, towards what can be considered as a systematic discovery of "Cole-Hopf-type" transformations for dynamics.Comment: 34 pages, 10 figure

    Toward a formal theory for computing machines made out of whatever physics offers: extended version

    Full text link
    Approaching limitations of digital computing technologies have spurred research in neuromorphic and other unconventional approaches to computing. Here we argue that if we want to systematically engineer computing systems that are based on unconventional physical effects, we need guidance from a formal theory that is different from the symbolic-algorithmic theory of today's computer science textbooks. We propose a general strategy for developing such a theory, and within that general view, a specific approach that we call "fluent computing". In contrast to Turing, who modeled computing processes from a top-down perspective as symbolic reasoning, we adopt the scientific paradigm of physics and model physical computing systems bottom-up by formalizing what can ultimately be measured in any physical substrate. This leads to an understanding of computing as the structuring of processes, while classical models of computing systems describe the processing of structures.Comment: 76 pages. This is an extended version of a perspective article with the same title that will appear in Nature Communications soon after this manuscript goes public on arxi

    Complexity, BioComplexity, the Connectionist Conjecture and Ontology of Complexity\ud

    Get PDF
    This paper develops and integrates major ideas and concepts on complexity and biocomplexity - the connectionist conjecture, universal ontology of complexity, irreducible complexity of totality & inherent randomness, perpetual evolution of information, emergence of criticality and equivalence of symmetry & complexity. This paper introduces the Connectionist Conjecture which states that the one and only representation of Totality is the connectionist one i.e. in terms of nodes and edges. This paper also introduces an idea of Universal Ontology of Complexity and develops concepts in that direction. The paper also develops ideas and concepts on the perpetual evolution of information, irreducibility and computability of totality, all in the context of the Connectionist Conjecture. The paper indicates that the control and communication are the prime functionals that are responsible for the symmetry and complexity of complex phenomenon. The paper takes the stand that the phenomenon of life (including its evolution) is probably the nearest to what we can describe with the term “complexity”. The paper also assumes that signaling and communication within the living world and of the living world with the environment creates the connectionist structure of the biocomplexity. With life and its evolution as the substrate, the paper develops ideas towards the ontology of complexity. The paper introduces new complexity theoretic interpretations of fundamental biomolecular parameters. The paper also develops ideas on the methodology to determine the complexity of “true” complex phenomena.\u

    Computation in Finitary Stochastic and Quantum Processes

    Full text link
    We introduce stochastic and quantum finite-state transducers as computation-theoretic models of classical stochastic and quantum finitary processes. Formal process languages, representing the distribution over a process's behaviors, are recognized and generated by suitable specializations. We characterize and compare deterministic and nondeterministic versions, summarizing their relative computational power in a hierarchy of finitary process languages. Quantum finite-state transducers and generators are a first step toward a computation-theoretic analysis of individual, repeatedly measured quantum dynamical systems. They are explored via several physical systems, including an iterated beam splitter, an atom in a magnetic field, and atoms in an ion trap--a special case of which implements the Deutsch quantum algorithm. We show that these systems' behaviors, and so their information processing capacity, depends sensitively on the measurement protocol.Comment: 25 pages, 16 figures, 1 table; http://cse.ucdavis.edu/~cmg; numerous corrections and update
    corecore