1,979 research outputs found

    Zenoness for Timed Pushdown Automata

    Full text link
    Timed pushdown automata are pushdown automata extended with a finite set of real-valued clocks. Additionaly, each symbol in the stack is equipped with a value representing its age. The enabledness of a transition may depend on the values of the clocks and the age of the topmost symbol. Therefore, dense-timed pushdown automata subsume both pushdown automata and timed automata. We have previously shown that the reachability problem for this model is decidable. In this paper, we study the zenoness problem and show that it is EXPTIME-complete.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    On Zone-Based Analysis of Duration Probabilistic Automata

    Full text link
    We propose an extension of the zone-based algorithmics for analyzing timed automata to handle systems where timing uncertainty is considered as probabilistic rather than set-theoretic. We study duration probabilistic automata (DPA), expressing multiple parallel processes admitting memoryfull continuously-distributed durations. For this model we develop an extension of the zone-based forward reachability algorithm whose successor operator is a density transformer, thus providing a solution to verification and performance evaluation problems concerning acyclic DPA (or the bounded-horizon behavior of cyclic DPA).Comment: In Proceedings INFINITY 2010, arXiv:1010.611

    Adding Time to Pushdown Automata

    Full text link
    In this tutorial, we illustrate through examples how we can combine two classical models, namely those of pushdown automata (PDA) and timed automata, in order to obtain timed pushdown automata (TPDA). Furthermore, we describe how the reachability problem for TPDAs can be reduced to the reachability problem for PDAs.Comment: In Proceedings QFM 2012, arXiv:1212.345

    Verification of Complex Real-time Systems using Rewriting Logic

    Get PDF
    This paper presents a method for model checking dense complex real-time systems. This approach is implemented at the meta level of the Rewriting Logic system Maude. The dense complex real-time system is specified using a syntax which has the semantics of timed automata and the property is specified with the temporal logic TLTL (Timed LTL). The well known timed automata model checkers Kronos and Uppaal only support TCTL model checking (a very limited fragment in the case of Uppaal). Specification of the TLTL property is reduced to LTL and its temporal constraints are captured in a new timed automaton. This timed automaton will be composed with the original timed automaton representing the semantics of the complex real-time system under analysis. Then, the product timed automaton will be abstracted using partition refinement of state space based on strong bi-simulation. The result is an untimed automaton modulo the TLTL property which represents an equivalent finite state system to be model checked using Maude LTL model checking. This approach is successfully tested on industrial designs

    Bulking II: Classifications of Cellular Automata

    Get PDF
    This paper is the second part of a series of two papers dealing with bulking: a way to define quasi-order on cellular automata by comparing space-time diagrams up to rescaling. In the present paper, we introduce three notions of simulation between cellular automata and study the quasi-order structures induced by these simulation relations on the whole set of cellular automata. Various aspects of these quasi-orders are considered (induced equivalence relations, maximum elements, induced orders, etc) providing several formal tools allowing to classify cellular automata
    corecore