3,018 research outputs found

    Symbolic Reasoning for Hearthstone

    Get PDF
    Trading-Card-Games are an interesting problem domain for Game AI, as they feature some challenges, such as highly variable game mechanics, that are not encountered in this intensity in many other genres. We present an expert system forming a player-level AI for the digital Trading-Card-Game Hearthstone. The bot uses a symbolic approach with a semantic structure, acting as an ontology, to represent both static descriptions of the game mechanics and dynamic game-state memories. Methods are introduced to reduce the amount of expert knowledge, such as popular moves or strategies, represented in the ontology, as the bot should derive such decisions in a symbolic way from its knowledge base. We narrow down the problem domain, selecting the relevant aspects for a play-to-win bot approach and comparing an ontology-driven approach to other approaches such as machine learning and case-based reasoning. Upon this basis, we describe how the semantic structure is linked with the game-state and how different aspects, such as memories, are encoded. An example will illustrate how the bot, at runtime, uses rules and queries on the semantic structure combined with a simple utility system to do reasoning and strategic planning. Finally, an evaluation is presented that was conducted by fielding the bot against the stock “Expert” AI that Hearthstone is shipped with, as well as Human opponents of various skill levels in order to assess how well the bot plays. Evaluating how believable the bot reasons is assessed through a Pseudo-Turing test

    Do Deep Neural Networks Capture Compositionality in Arithmetic Reasoning?

    Full text link
    Compositionality is a pivotal property of symbolic reasoning. However, how well recent neural models capture compositionality remains underexplored in the symbolic reasoning tasks. This study empirically addresses this question by systematically examining recently published pre-trained seq2seq models with a carefully controlled dataset of multi-hop arithmetic symbolic reasoning. We introduce a skill tree on compositionality in arithmetic symbolic reasoning that defines the hierarchical levels of complexity along with three compositionality dimensions: systematicity, productivity, and substitutivity. Our experiments revealed that among the three types of composition, the models struggled most with systematicity, performing poorly even with relatively simple compositions. That difficulty was not resolved even after training the models with intermediate reasoning steps.Comment: accepted by EACL 202

    A Human-Centric System for Symbolic Reasoning About Code

    Get PDF
    While testing and tracing on specific input values are useful starting points for students to understand program behavior, ultimately students need to be able to reason rigorously and logically about the correctness of their code on all inputs without having to run the code. Symbolic reasoning is reasoning abstractly about code using arbitrary symbolic input values, as opposed to specific concrete inputs. The overarching goal of this research is to help students learn symbolic reasoning, beginning with code containing simple assertions as a foundation and proceeding to code involving data abstractions and loop invariants. Toward achieving this goal, this research has employed multiple experiments across five years at three institutions: a large, public university, an HBCU (Historically Black Colleges and Universities), and an HSI (Hispanic Serving Institution). A total of 862 students participated across all variations of the study. Interactive, online tools can enhance student learning because they can provide targeted help that would be prohibitively expensive without automation. The research experiments employ two such symbolic reasoning tools that had been developed earlier and a newly designed human-centric reasoning system (HCRS). The HCRS is a first step in building a generalized tutor that achieves a level of resolution necessary to identify difficulties and suggest appropriate interventions. The experiments show the value of tools in pinpointing and classifying difficulties in learning symbolic reasoning, as well as in learning design-by-contract assertions and applying them to develop loop invariants for code involving objects. Statistically significant results include the following. Students are able to learn symbolic reasoning with the aid of instruction and an online tool. Motivation improves student perception and attitude towards symbolic reasoning. Tool usage improves student performance on symbolic reasoning, their explanations of the larger purpose of code segments, and self-efficacy for all subpopulations

    A Novel Neural-symbolic System under Statistical Relational Learning

    Full text link
    A key objective in field of artificial intelligence is to develop cognitive models that can exhibit human-like intellectual capabilities. One promising approach to achieving this is through neural-symbolic systems, which combine the strengths of deep learning and symbolic reasoning. However, current approaches in this area have been limited in their combining way, generalization and interpretability. To address these limitations, we propose a general bi-level probabilistic graphical reasoning framework called GBPGR. This framework leverages statistical relational learning to effectively integrate deep learning models and symbolic reasoning in a mutually beneficial manner. In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models. At the same time, the deep learning models assist in enhancing the efficiency of the symbolic reasoning process. Through extensive experiments, we demonstrate that our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks

    Generating Human Motion by Symbolic Reasoning

    Get PDF
    This paper describes work on applying AI planning methods to generate human body motion for the purpose of animation. It is based on the fact that although we do not know how the body actually controls massively redundant degrees of freedom of its joints and moves in given situations, the appropriateness of specific behavior for particular conditions can be axiomatized at a gross level using commonsensical observations. Given the motion axioms (rules), the task of the planner is to find a discrete sequence of intermediate postures of the body via goal reduction reasoning based on the rules along with a procedure to discover specific collision-avoidance constraints, such that any two consecutive postures are related via primitive motions of the feet, the pelvis, the torso, the head, the hands, or other body parts. Our planner also takes account of the fact that body motions are continuous by taking advantage of execution-time feedback. Planning decisions are made in the task space where our elementary spatial intuition is preserved as far as possible, only dropping down to a joint space formulation typical in robot motion planning when absolutely necessary. We claim that our work is the first serious attempt to use an AI planning paradigm for animation of human body motion

    Efficient Symbolic Reasoning for Neural-Network Verification

    Full text link
    The neural network has become an integral part of modern software systems. However, they still suffer from various problems, in particular, vulnerability to adversarial attacks. In this work, we present a novel program reasoning framework for neural-network verification, which we refer to as symbolic reasoning. The key components of our framework are the use of the symbolic domain and the quadratic relation. The symbolic domain has very flexible semantics, and the quadratic relation is quite expressive. They allow us to encode many verification problems for neural networks as quadratic programs. Our scheme then relaxes the quadratic programs to semidefinite programs, which can be efficiently solved. This framework allows us to verify various neural-network properties under different scenarios, especially those that appear challenging for non-symbolic domains. Moreover, it introduces new representations and perspectives for the verification tasks. We believe that our framework can bring new theoretical insights and practical tools to verification problems for neural networks
    • …
    corecore