28,436 research outputs found

    A Strategy Language for Testing Register Transfer Level Logic

    Get PDF
    The development of modern ICs requires a huge investment in RTL verification. This is a reflection of brisk release schedules and the complexity of contemporary chip designs. A major bottleneck to reaching verification closure in such designs is the disproportionate effort expended in crafting directed tests; which is necessary to reach those behaviors that other, more automated testing methods fail to cover. This paper defines a novel language that can be used to generate targeted stimuli for RTL logic and which mitigates the complexities of writing directed tests. The main idea is to treat directed testing as a meta-reasoning problem about simulation. Our language is both formalized and prototyped as a proof-search strategy language in rewriting logic. We illustrate its novel features and practical use with several examples.published or submitted for publicatio

    Relational Symbolic Execution

    Full text link
    Symbolic execution is a classical program analysis technique used to show that programs satisfy or violate given specifications. In this work we generalize symbolic execution to support program analysis for relational specifications in the form of relational properties - these are properties about two runs of two programs on related inputs, or about two executions of a single program on related inputs. Relational properties are useful to formalize notions in security and privacy, and to reason about program optimizations. We design a relational symbolic execution engine, named RelSym which supports interactive refutation, as well as proving of relational properties for programs written in a language with arrays and for-like loops

    Probabilistic Programming Concepts

    Full text link
    A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of complex, structured probability distributions. Each of these languages employs its own probabilistic primitives, and comes with a particular syntax, semantics and inference procedure. This makes it hard to understand the underlying programming concepts and appreciate the differences between the different languages. To obtain a better understanding of probabilistic programming, we identify a number of core programming concepts underlying the primitives used by various probabilistic languages, discuss the execution mechanisms that they require and use these to position state-of-the-art probabilistic languages and their implementation. While doing so, we focus on probabilistic extensions of logic programming languages such as Prolog, which have been developed since more than 20 years

    An Integrated Development Environment for Declarative Multi-Paradigm Programming

    Full text link
    In this paper we present CIDER (Curry Integrated Development EnviRonment), an analysis and programming environment for the declarative multi-paradigm language Curry. CIDER is a graphical environment to support the development of Curry programs by providing integrated tools for the analysis and visualization of programs. CIDER is completely implemented in Curry using libraries for GUI programming (based on Tcl/Tk) and meta-programming. An important aspect of our environment is the possible adaptation of the development environment to other declarative source languages (e.g., Prolog or Haskell) and the extensibility w.r.t. new analysis methods. To support the latter feature, the lazy evaluation strategy of the underlying implementation language Curry becomes quite useful.Comment: In A. Kusalik (ed), proceedings of the Eleventh International Workshop on Logic Programming Environments (WLPE'01), December 1, 2001, Paphos, Cyprus. cs.PL/011104
    • …
    corecore