7 research outputs found

    The symbolic computation of series solutions to ordinary differential equations using trees (extended abstract)

    Get PDF
    Algorithms previously developed by the author give formulas which can be used for the efficient symbolic computation of series expansions to solutions of nonlinear systems of ordinary differential equations. As a by product of this analysis, formulas are derived which relate to trees to the coefficients of the series expansions, similar to the work of Leroux and Viennot, and Lamnabhi, Leroux and Viennot

    Trees, bialgebras and intrinsic numerical algorithms

    Get PDF
    Preliminary work about intrinsic numerical integrators evolving on groups is described. Fix a finite dimensional Lie group G; let g denote its Lie algebra, and let Y(sub 1),...,Y(sub N) denote a basis of g. A class of numerical algorithms is presented that approximate solutions to differential equations evolving on G of the form: dot-x(t) = F(x(t)), x(0) = p is an element of G. The algorithms depend upon constants c(sub i) and c(sub ij), for i = 1,...,k and j is less than i. The algorithms have the property that if the algorithm starts on the group, then it remains on the group. In addition, they also have the property that if G is the abelian group R(N), then the algorithm becomes the classical Runge-Kutta algorithm. The Cayley algebra generated by labeled, ordered trees is used to generate the equations that the coefficients c(sub i) and c(sub ij) must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms

    The realization of input-output maps using bialgebras

    Get PDF
    The theory of bialgebras is used to prove a state space realization theorem for input/output maps of dynamical systems. This approach allows for the consideration of the classical results of Fliess and more recent results on realizations involving families of trees. Two examples of applications of the theorum are given

    The analysis of control trajectories using symbolic and database computing

    Get PDF
    This final report comprises the formal semi-annual status reports for this grant for the periods June 30-December 31, 1993, January 1-June 30, 1994, and June 1-December 31, 1994. The research supported by this grant is broadly concerned with the symbolic computation, mixed numeric-symbolic computation, and database computation of trajectories of dynamical systems, especially control systems. A review of work during the report period covers: trajectories and approximating series, the Cayley algebra of trees, actions of differential operators, geometrically stable integration algorithms, hybrid systems, trajectory stores, PTool, and other activities. A list of publications written during the report period is attached
    corecore