brought to you by **CORE**

11- 31-5R

305200 P.12

Trees, Bialgebras and Intrinsic Numerical Algorithms

PETER CROUCH ROBERT GROSSMAN RICHARD LARSON

Laboratory for Advanced Computing Technical Report LAC90-R23

Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago (M/C 249) P. O. Box 4348 Chicago, IL 60680

May, 1990

(NASA-C?-187031) TPERS, BIALGEORAS AND N90-29925 INTPINSIC NUMERICAL ALGORITHMS (Illinois Univ.) 12 D CSCL 090 Unclas

G3/61 0305300

.

Trees, Bialgebras and Intrinsic Numerical Algorithms

Peter Crouch^{*}, Robert Grossman[†] and Richard Larson[‡]

May, 1990

Abstract

This report describes preliminary work about intrinsic numerical integrators evolving on groups. Fix a finite dimensional Lie group G, let g denote its Lie algebra, and let Y_1, \ldots, Y_N denote a basis of g. We give a class of numerical algorithms to approximate solutions to differential equations evolving on G of the form:

$$\dot{\boldsymbol{x}}(t) = F(\boldsymbol{x}(t)), \qquad \boldsymbol{x}(0) = \boldsymbol{p} \in \boldsymbol{G},$$

Ĺ

where

$$F = \sum_{\mu=1}^{N} a^{\mu} Y_{\mu}, \quad a^{\mu} \in C^{\infty}(G).$$

The algorithm depends upon constants c_i and c_{ij} , for i = 1, ..., k and j < i. The algorithm has the property that if the algorithm starts on the group, then it remains on the group. It also has the property that if G is the abelian group \mathbb{R}^N , then the algorithm becomes the classical Runge-Kutta algorithm. We use the Cayley algebra generated by labeled, ordered trees to generate the equations that the coefficients c_i and c_{ij} must satisfy in order for the algorithm to yield an *r*th order numerical integrator and to analyze the resulting algorithms.

^{*}This research was supported by the NSF and EPRI.

[†]This research is supported in part by NASA grant NAG2-513 and NSF Grant DMS-8904740.

^tThis research is supported by NSF Grant DMS-8904740.

1 Introduction

Fix a finite dimensional Lie group G, let g denote its Lie algebra, and let Y_1, \ldots, Y_N denote a basis of g. We give a class of numerical algorithms to approximate solutions to differential equations evolving on G of the form:

$$\dot{\boldsymbol{x}}(t) = F(\boldsymbol{x}(t)), \qquad \boldsymbol{x}(0) = p \in G,$$

where

$$F = \sum_{\mu=1}^{N} a^{\mu} Y_{\mu}, \quad a^{\mu} \in C^{\infty}(G).$$

The algorithm depends upon constants c_i and c_{ij} , for i = 1, ..., k and j < i. The algorithm has the property that if the algorithm starts on the group, then it remains on the group. It also has the property that if G is the abelian group \mathbb{R}^N , then the algorithm becomes the classical Runge-Kutta algorithm. Our analysis requires the Cayley algebra generated by labeled, ordered trees, introduced in [10], [11] and [6]. We use the Cayley algebra of trees to generate the equations that the coefficients c_i and c_{ij} must satisfy in order for the algorithm to yield an *r*th order numerical integrator and to analyze the resulting algorithms.

This is a preliminary report. A final report containing complete proofs, examples, and a further analysis of the algorithms is in preparation.

2 Families of trees

The relation between trees and Taylor's theorem goes back as least as far as Cayley [3] and [4]. Important use of this relation has been made by Butcher in his work on high order Runge-Kutta algorithms [1] and [2]. In this section and the next, we follow the treatment in [10] and [11].

By a tree we mean a rooted finite tree. If $\{F_1, \ldots, F_M\}$ is a set of symbols, we will say a tree is *labeled with* $\{F_1, \ldots, F_M\}$ if every node of the tree other than the root has an element of $\{F_1, \ldots, F_M\}$ assigned to it. We denote the set of all trees labeled with $\{F_1, \ldots, F_M\}$ by $\mathcal{LT}(F_1, \ldots, F_M)$. Let $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ denote the vector space over k with basis $\mathcal{LT}(F_1, \ldots, F_M)$. We show that this vector space is a graded connected algebra.

We define the multiplication in $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ as follows. Since the set of labeled trees form a basis for $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$, it is sufficient to describe the product of two labeled trees. Suppose t_1 and t_2 are two labeled trees. Let s_1, \ldots, s_r be the children of the root of t_1 . If t_2 has n + 1 nodes (counting the root), there are $(n + 1)^r$ ways to attach the r subtrees of t_1 which have s_1, \ldots, s_r as roots to the labeled tree t_2 by making each s_i the child of some node of t_2 , keeping the original labels. The product t_1t_2 is defined to be the sum of these $(n + 1)^r$ labeled trees. It can be shown that this product is associative, and that the tree consisting only of the root is a multiplicative identity; see [5].

We can define a grading on $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ by letting $k\{\mathcal{LT}_n(F_1, \ldots, F_M)\}$ be the subspace of $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ spanned by the trees with n + 1 nodes. The following theorem is proved in [9].

Theorem 2.1 $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ is a graded connected algebra.

If $\{F_1, \ldots, F_M\}$ is a set of symbols, then the free associative algebra $k < F_1, \ldots, F_M >$ is a graded connected algebra, and there is an algebra homomorphism

$$\phi: k < F_1, \ldots, F_M > \rightarrow k \{ \mathcal{LT}(F_1, \ldots, F_M) \}.$$

The map ϕ sends F_i to the labeled tree with two nodes: the root, and a child of the root labeled with F_i ; it is then extended to all of $k < F_1, \ldots, F_M >$ by using the fact that it is an algebra homomorphism.

We say that a rooted finite tree is ordered in case there is a partial ordering on the nodes such that the children of each node are non-decreasing with respect to the ordering. We say such a tree is labeled with $\{F_1, \ldots, F_M\}$ in case every element, except the root, has an element of $\{F_1, \ldots, F_M\}$ assigned to it. Let $k\{\mathcal{LOT}(F_1, \ldots, F_M)\}$ denote the vector space over k whose basis consists of labeled ordered trees. It turns out that $k\{\mathcal{LOT}(F_1, \ldots, F_M)\}$ is also a graded connected algebra using the same multiplication defined above. See [9] for a proof of the following theorem.

We say that a rooted finite tree is heap-ordered in case there is a total ordering on all nodes in the tree such that each node procedes all of its children in the ordering. We define $k\{\mathcal{LHOT}(F_1, \ldots, F_M)\}$ as above to be the vector space over k whose basis consists of heap-ordered trees labeled with $\{F_1, \ldots, F_M\}$. In [9] we show that $k\{\mathcal{LHOT}(F_1, \ldots, F_M)\}$ is also a graded connected algebra [9] and satisfies:

Theorem 2.2 The map

$$\phi: k < F_1, \ldots, F_M > \rightarrow k \{ \mathcal{LHOT}(F_1, \ldots, F_M) \}$$

is injective.

Fix N derivations Y_1, \ldots, Y_N of R and consider M other derivations of R of the form

$$F_{i} = \sum_{\mu=1}^{N} a_{i}^{\mu} Y_{\mu}, \quad a_{i}^{\mu} \in R, \quad i = 1, \dots, M.$$
 (1)

Let End(R) denote the endormorphisms of the ring R. Using the data (1), we now define a map

$$\psi: k\{\mathcal{LT}(F_1,\ldots,F_M)\} \to \operatorname{End}(R)$$

in the following steps.

Step 1. Given a labeled tree $t \in \mathcal{LT}_m(F_1, \ldots, F_M)$, assign the root the number 0 and assign the remaining nodes the numbers $1, \ldots, m$. From now on we identify the node with the number assigned to it. Let $j \in$ nodes t, and suppose that l, \ldots, l' are the children of j and that j is labeled with F_{γ_1} . Fix $\mu_{l_1}, \ldots, \mu_{l'}$ with

$$1 \leq \mu_l, \ldots, \mu_{l'} \leq N$$

and define

$$R(j; \mu_l, \dots, \mu_{l'}) = Y_{\mu_l} \cdots Y_{\mu_{l'}} a_{\gamma_j}^{\mu_j}$$

if j is not the root
$$= Y_{\mu_l} \cdots Y_{\mu_{l'}}$$

if j is the root.

We abbreviate this to R(j). Observe that $R(j) \in R$ for j > 0.

Step 2. Define

$$\psi(t)=\sum_{\mu_1,\ldots,\mu_m=1}^N R(m)\cdots R(1)R(0).$$

Step 3. Extend ψ to all $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ by k-linearity. Remark 2.1 In exactly the same way, we define a map

$$\psi: k\{\mathcal{LT}(F_1, \ldots, F_M)\} \to \operatorname{End}(R),$$

by ignoring the ordering of the nodes.

Remark 2.2 Let H denote one of the algebras of labeled trees above, possibly with additional structure such as an ordering or heap ordering. It is easy to check that the ψ map makes R into a left H-module.

Let χ denote the map

$$k < F_1, \ldots, F_M > \rightarrow \operatorname{End}(R)$$

defined by using the substitution (1) and simplifying to obtain an endormorphim of R.

Lemma 2.1 (i) The map ψ is an algebra homomorphism

(ii) and $\chi = \psi \circ \phi$.

PROOF: The proof of (i) is a straightforward verification and is contained in [8]. Since χ and $\psi \circ \phi$ agree on the generating set E_1, \ldots, E_M , part (ii) follows from part (i).

In the later sections, we will also require two other products defined on families of trees. Given $t_1, t_2 \in \mathcal{LT}(F_1, \ldots, F_M)$, define the meld product $t_2 \odot t_1$ to be the labeled tree obtained by identifying the roots of the two trees. The meld product is then extended to all of $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ by linearity. Given a derivation $F \in \text{Der}(R)$, let t_2 be the tree $\phi(F)$ and let $t_1 \in \mathcal{LT}(F_1, \ldots, F_M)$. Recall t_2 is a tree consisting of a root and a node laveled F. We define the composition product $t_2 \circ t_1$ to be the tree formed by attaching the subtrees whose roots are the children of the root of t_1 to the node labeled F of the tree t_2 .

3 Trees and Taylor Series

Fix a Lie group G of dimension N, with Lie algebra g, and let R denote a ring of infinitely differentiable functions on G. We let $\exp : g \longrightarrow G$ denote the exponential map.

Fix a basis of the Lie algebra g consisting of left invariant vector fields Y_1, \ldots, Y_N . We will need a map

$$\sharp: R^N \longrightarrow R \otimes g, \quad (a_1, \ldots, a_N) \mapsto \sum_{\mu=1}^N a_{\mu} Y_{\mu}$$

and its inverse, which we denote \flat . We usually write these maps as superscripts, as in $(a_1, \ldots, a_N)^{\sharp}$.

We are interested in derivations F of the form

$$F = \sum_{\mu=1}^{N} a^{\mu} Y_{\mu}, \quad a^{\mu} \in R, \quad \mu = 1, \dots, N$$

and the corresponding differential equation

$$\dot{\boldsymbol{x}}(t) = F(\boldsymbol{x}(t)), \quad \boldsymbol{x}(0) = p \in G.$$
(2)

Let $\exp(tF)(x)$ denote the resulting of flowing for time t along the trajectory of (2) through the initial point $p \in G$. We require two lemmas concerned with Taylor series expansion of a solution of (2). These lemmas will use the maps ϕ and ψ defined in the previous section.

If α is a tree, define the *exponential* and *Meld-exponential* of a tree by the formal power series

$$\exp(t\alpha) = 1 + t\alpha + \frac{t^2}{2!}\alpha^2 + \frac{t^3}{3!}\alpha^3 + \cdots$$
$$\operatorname{Mexp}(t\alpha) = 1 + t\alpha + \frac{t^2}{2!}\alpha \odot \alpha + \frac{t^3}{3!}\alpha \odot \alpha \odot \alpha + \cdots$$

Lemma 3.1 Assume $f \in R$ and $F \in Der(R)$. Then

1.

$$(F^k f)(x) = \frac{d^k}{dt^k} f(\exp(tF)x) \mid_{t=0}$$

2. If f is analytic near x, then for sufficiently small t,

$$f(\exp(tF)x) = \sum_{k=0}^{\infty} f(x;F^k) \frac{t^k}{k!},$$

where $f(x; F^k)$ is defined to be $(F^k f)(x)$.

3. If f is analytic near x, then for sufficiently small t,

$$f(\exp(tF)x) = \psi(\exp(t\phi(F)))f|_x,$$

where $\alpha = \phi(F)$.

PROOF. Assertions (1) and (2) can be found in [12]. Since ϕ is an algebra homomorphism, $\phi(F^k) = \alpha^k$. Assertion (3) then follows immediately from Assertion (2).

Lemma 3.2 Assume $f \in R$ and $F \in Der(R)$ is left-invariant. Let $\alpha = \phi(F)$. Then

1.

$$f(\exp(tF)x) = f(x) + tDf(x) \cdot F(x) + \frac{t^2}{2!}D^2f(x)(F(x), F(x)) + \cdots$$

2.

$$f(\exp(tF)x) = \psi(\operatorname{Mexp}(t\alpha)) \cdot f|_x$$

3. If $G \in \text{Der}(R)$,

$$\sharp(\flat(G)(\exp(tF)x)) = \psi(\beta \circ \operatorname{Mexp}(t\alpha)),$$

where $\beta = \phi(G)$.

PROOF. Assertion (1) is simply Taylor's theorem. Assertion (2) follows from Assertion (1) and the definition of the ψ map, since left-invariant vector fields have "constant coefficients" with respect to the basis Y_{μ} . Assertion (3) follows from Assertion (2) and the definition of the ψ , flat and sharp maps.

4 The algorithm

÷

We are interested in numerical algorithms of the Runge-Kutta type to approximate solutions of

$$\dot{\boldsymbol{x}}(t) = F(\boldsymbol{x}(t)), \qquad \boldsymbol{x}(0) = p \in G,$$

where $F \in \text{Der}(R)$. The algorithm depends upon constants c_i and c_{ij} , for i = 1, ..., k and j < i. For fixed constants, define the following elements of the Lie algebra g

$$\bar{F}_{1} = \sum_{\mu=1}^{N} a^{\mu}(\nu_{0})Y_{\mu} \in g$$

$$\bar{F}_{2} = \sum_{\mu=1}^{N} a^{\mu}(\exp(hc_{21}\bar{F}_{1}) \cdot \nu_{0})Y_{\mu} \in g$$

$$\bar{F}_{3} = \sum_{\mu=1}^{N} a^{\mu}(\exp(hc_{32}\bar{F}_{2}) \cdot \exp(hc_{31}\bar{F}_{1}) \cdot \nu_{0})Y_{\mu} \in g$$

These arise by "freezing the coefficients" of F at various points along the flow of F.

Algorithm 1. Version 1. Let $x_0 = p$ and put

$$x_{n+1} = \exp hc_k F_k \cdots \exp hc_1 F_1 x_n,$$

for $n \ge 0$.

Version 2. Let $x_0 = p$ and put

$$x_{n+1} = \exp\left(hc_k\bar{F}_k + \cdots + \exp hc_1F_1\right)x_n,$$

for $n \ge 0$.

5 Necessary conditions

We prepare with two lemmas.

Lemma 5.1 Let $f \in R$ and

$$X_i = \phi(\bar{F}_i) \in k\{\mathcal{LT}(F_1, \ldots, F_M)\}[[h]].$$

Then

$$\bar{F}_1(f) = \bar{\psi}(\phi(\bar{F}))(f)$$

$$\bar{F}_2(f) = \bar{\psi}(\phi(\bar{F}) \circ \operatorname{Mexp}(hc_{21}X_1))(f)$$

$$\bar{F}_3(f) = \bar{\psi}(\phi(\bar{F}) \circ \operatorname{Mexp}(hc_{31}X_1 \odot \operatorname{Mexp}(hc_{32}X_2)(f))$$

$$:$$

Here $\bar{\psi}$ is essentially the ψ map followed by "freezing the coefficients" at ν_0 . More precisely,

$$\psi: k\{\mathcal{LT}(\bar{F}_1,\ldots,\bar{F}_M)\} \to \operatorname{End}(R).$$

We do this in several steps.

Step 1. Given a labeled tree $t \in \mathcal{LT}_m(\bar{F_1}, \ldots, \bar{F_M})$, assign the root the number 0 and assign the remaining nodes the numbers $1, \ldots, m$. From now on we identify the node with the number assigned to it. Let $j \in$ nodes t, and suppose that l, \ldots, l' are the children of j and that j is labeled with F_{γ_j} . Fix $\mu_l, \ldots, \mu_{l'}$ with

$$1 \leq \mu_l, \ldots, \mu_{l'} \leq N$$

and define

$$R(j; \mu_l, \dots, \mu_{l'}) = Y_{\mu_l} \cdots Y_{\mu_{l'}} a_{\gamma_j}^{\mu_j}(\nu_0)$$

if j is not the root
$$= Y_{\mu_l} \cdots Y_{\mu_{l'}}$$

if j is the root.

We abbreviate this to R(j).

Step 2. Define

$$\bar{\psi}(t)=\sum_{\mu_1,\ldots,\mu_m=1}^N R(m)\cdots R(1)R(0).$$

Step 3. Extend ψ to all $k \{ \mathcal{LT}(F_1, \ldots, F_M) \}$ by k-linearity.

It is useful to have an intrinsic characterization of the elements $X_i \in k\{\mathcal{LT}(F_1, \ldots, F_M)\}[[h]]$. Order the labels F_1, \ldots, F_M according to their subscripts: $F_1 < \cdots < F_M$. Let $k\{\mathcal{LOHOT}(F_1, \ldots, F_M)\}$ denote those elements of $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ satisfying

- 1. The nodes are heap ordered with respect to the labels F_1, \ldots, F_M ; in other words, the label of a child of a node is (strictly) smaller than the label of the node itself.
- 2. The children of a node are ordered with respect to the labels F_1, \ldots, F_M ; in other words, the labels of the children of a node are nondecreasing.

Using ordered, heap ordered trees it is easy to keep track of the constants c_i and c_{ij} that arise in Taylor series computations. To do this we define a map analogous to the ψ map.

Define

$$\rho: k\{\mathcal{LOHOT}(F_1, \ldots, F_M)\} \to \mathrm{End}(R)$$

as follows

Step 1. Given a labeled tree $t \in \mathcal{LOHOT}(F_1, \ldots, F_M)$, with m + 1 nodes, assign the root the number 0 and assign the remaining nodes the numbers $1, \ldots, m$. From now on we identify the node with the number assigned to it. Fix a node j of t and let l, \ldots, l' denote its children. Let F_{γ_j} denote the

label of node j. Let p_i denote the number of children of j labeled with the label F_i , for i = 1, ..., M. Let |p| denote $p_1 + \cdots + p_M$. Fix $\mu_l, ..., \mu_{l'}$ with

$$1 \leq \mu_l, \ldots, \mu_{l'} \leq N$$

and define

$$R(j; \mu_l, \dots, \mu_{l'}) = \frac{h^{|p|} c_{jl} \cdots c_{jl'}}{p_1! \cdots p_M!} Y_{\mu_l} \cdots Y_{\mu_{l'}} a_{\gamma_j}^{\mu_j}(\nu_0)$$

if j is not the root
$$= Y_{\mu_l} \cdots Y_{\mu_{l'}}$$

if j is the root.

We abbreviate this to R(j).

Step 2. Define

$$\rho(t) = \sum_{\mu_1,\dots,\mu_m=1}^N R(m) \cdots R(1)R(0).$$

Step 3. Extend ρ to all $k \{ \mathcal{LOHOT}(F_1, \ldots, F_M) \}$ by k-linearity.

Lemma 5.2 Let $X_i = \phi(\overline{F}_i)$ and $f \in R$. Then

$$X_i(f) = \sum \rho(t)(f),$$

where the sum is over all trees $t \in \mathcal{LOHOT}(F_1, \ldots, F_M)$ satisfying (i) t consists of i + 1 or fewer nodes; (ii) the root of the tree has a single child labeled F_i .

It is now straigtforward to derive the following necessary condition for a kth order Runge-Kutta algorithm on a group.

Theorem 5.1 A necessary condition for a Runge-Kutta method of order k on a group is that for each rooted, ordered tree t consisting of k + 1 or fewer nodes

$$\sum \rho(t) = \frac{1}{(\#(nodes \ (\ t)) - 1)!},$$

where the sum is over all $t \in \mathcal{LOHOT}(F_1, \ldots, F_M)$ having the same topology as t.

References

- [1] J. C. Butcher, "An order bound for Runge-Kutta methods," SIAM J. Numerical Analysis, 12 (1975), pp. 304-315.
- [2] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, John Wiley, 1986.
- [3] A. Cayley, "On the theory of the analytical forms called trees," in Collected Mathematical Papers of Arthur Cayley, Cambridge Univ. Press, Cambridge, 1890, Vol. 3, pp. 242-246.
- [4] A. Cayley, "On the analytical forms called trees. Second part," in Collected Mathematical Papers of Arthur Cayley, Cambridge Univ. Press, Cambridge, 1891, Vol. 4, pp. 112-115.
- [5] R. Grossman, "The evaluation of expressions involving higher order derivations," Journal of Mathematical Systems, Estimation, and Control, Vol. 1, 1990.
- [6] R. Grossman and R. Larson, "The symbolic computation of derivations using labeled trees," submitted for publication.
- [7] R. Grossman and R. Larson, "Hopf-algebraic structure of combinatorial objects and differential operators," *Israeli J. Math.*, to appear.
- [8] R. Grossman and R. Larson, "Solving nonlinear equations from higher order derivations in linear stages," Advances in Mathematics, Vol. 82 (1990), pp. 180-202.
- [9] R. Grossman and R. Larson, "Hopf algebraic structures of families of trees," J. Algebra, Vol. 26 (1989), pp. 184-210.
- [10] R. Grossman and R. Larson, "Labeled trees and the algebra of differential operators," *Algorithms and Graphs*, B. Richter, editor, American Mathematical Society, Providence, 1989, pp. 81-87.
- [11] R. Grossman and R. Larson, "Labeled trees and the efficient computation of derivations," in *Proceedings of 1989 International Symposium* on Symbolic and Algebraic Computation, ACM, 1989, pp. 74-80.
- [12] V. S. Varadarajan, "Lie Groups, Lie Algebras, and their Representations," Prentice-Hall, Inc., 1974.w