Trees, Bialgebras and Intrinsic Numerical Algorithms

Peter Crouch
Robert Grossman
Richard Larson
Laboratory for Advanced Computing
Technical Report LAC90-R23

Department of Mathematics, Statistics,
and Computer Science University of Illinois at Chicago (M/C 249)
P. O. Box 4348

Chicago, IL 60680

May, 1990


```
(NACA-CO-lGTO?I) TOSFS, IALFE`NAS ANG
univ.) 1?: ©CCL Og`
Q3/01 0nctas
```


Trees, Bialgebras and Intrinsic Numerical Algorithms

Peter Crouch; ${ }^{\text {R }}$ Robert Grossman ${ }^{\dagger}$ and Richard Larson ${ }^{\ddagger}$

May, 1990

Abstract

This report describes preliminary work about intrinsic numerical integrators evolving on groups. Fix a finite dimensional Lie group G, let g denote its Lie algebra, and let Y_{1}, \ldots, Y_{N} denote a basis of g . We give a class of numerical algorithms to approximate solutions to differential equations evolving on G of the form: $$
\dot{x}(t)=F(x(t)), \quad x(0)=p \in G,
$$ where $$
F=\sum_{\mu=1}^{N} a^{\mu} Y_{\mu}, \quad a^{\mu} \in C^{\infty}(G)
$$

The algorithm depends upon constants c_{i} and $c_{i j}$, for $i=1, \ldots, k$ and $j<i$. The algorithm has the property that if the algorithm starts on the group, then it remains on the group. It also has the property that if G is the abelian group \mathbf{R}^{N}, then the algorithm becomes the classical Runge-Kutta algorithm. We use the Cayley algebra generated by labeled, ordered trees to generate the equations that the coefficients c_{i} and $c_{i j}$ must satisfy in order for the algorithm to yield an r th order numerical integrator and to analyze the resulting algorithms.

[^0]
1 Introduction

Fix a finite dimensional Lie group G, let g denote its Lie algebra, and let Y_{1}, \ldots, Y_{N} denote a basis of g. We give a class of numerical algorithms to approximate solutions to differential equations evolving on G of the form:

$$
\dot{x}(t)=F(x(t)), \quad x(0)=p \in G,
$$

where

$$
F=\sum_{\mu=1}^{N} a^{\mu} Y_{\mu}, \quad a^{\mu} \in C^{\infty}(G)
$$

The algorithm depends upon constants c_{i} and $c_{i j}$, for $i=1, \ldots, k$ and $j<i$. The algorithm has the property that if the algorithm starts on the group, then it remains on the group. It also has the property that if G is the abelian group \mathbf{R}^{N}, then the algorithm becomes the classical Runge-Kutta algorithm. Our analysis requires the Cayley algebra generated by labeled, ordered trees, introduced in [10], [11] and [6]. We use the Cayley algebra of trees to generate the equations that the coefficients c_{i} and $c_{i j}$ must satisfy in order for the algorithm to yield an r th order numerical integrator and to analyze the resulting algorithms.

This is a preliminary report. A final report containing complete proofs, examples, and a further analysis of the algorithms is in preparation.

2 Families of trees

The relation between trees and Taylor's theorem goes back as least as far as Cayley [3] and [4]. Important use of this relation has been made by Butcher in his work on high order Runge-Kutta algorithms [1] and [2]. In this section and the next, we follow the treatment in [10] and [11].

By a tree we mean a rooted finite tree. If $\left\{F_{1}, \ldots, F_{M}\right\}$ is a set of symbols, we will say a tree is labeled with $\left\{F_{1}, \ldots, F_{M}\right\}$ if every node of the tree other than the root has an element of $\left\{F_{1}, \ldots, F_{M}\right\}$ assigned to it. We denote the set of all trees labeled with $\left\{F_{1}, \ldots, F_{M}\right\}$ by $\mathcal{L T}\left(F_{1}, \ldots, F_{M}\right)$. Let $k\left\{\mathcal{L} \mathcal{T}\left(F_{1}, \ldots, F_{M}\right)\right\}$ denote the vector space over k with basis $\mathcal{L} \mathcal{T}\left(F_{1}\right.$, \ldots, F_{M}). We show that this vector space is a graded connected algebra.

We define the multiplication in $k\left\{\mathcal{L} \mathcal{T}\left(F_{1}, \ldots, F_{M}\right)\right\}$ as follows. Since the set of labeled trees form a basis for $k\left\{\mathcal{L} T\left(F_{1}, \ldots, F_{M}\right)\right\}$, it is sufficient to describe the product of two labeled trees. Suppose t_{1} and t_{2} are two labeled trees. Let s_{1}, \ldots, s_{r} be the children of the root of t_{1}. If t_{2} has $n+1$
nodes (counting the root), there are ($n+1$) ${ }^{r}$ ways to attach the r subtrees of t_{1} which have s_{1}, \ldots, s_{r} as roots to the labeled tree t_{2} by making each s_{i} the child of some node of t_{2}, keeping the original labels. The product $t_{1} t_{2}$ is defined to be the sum of these $(n+1)^{r}$ labeled trees. It can be shown that this product is associative, and that the tree consisting only of the root is a multiplicative identity; see [5].

We can define a grading on $k\left\{\mathcal{L} \mathcal{T}\left(F_{1}, \ldots, F_{M}\right)\right\}$ by letting $k\left\{\mathcal{L} \mathcal{T}_{n}\left(F_{1}\right.\right.$, $\left.\left.\ldots, F_{M}\right)\right\}$ be the subspace of $k\left\{\mathcal{L} \mathcal{T}\left(F_{1}, \ldots, F_{M}\right)\right\}$ spanned by the trees with $n+1$ nodes. The following theorem is proved in [9].

Theorem $2.1 k\left\{\mathcal{L} \mathcal{T}\left(F_{1}, \ldots, F_{M}\right)\right\}$ is a graded connected algebra.
If $\left\{F_{1}, \ldots, F_{M}\right\}$ is a set of symbols, then the free associative algebra $\left.k<F_{1}, \ldots, F_{M}\right\rangle$ is a graded connected algebra, and there is an algebra homomorphism

$$
\phi: k<F_{1}, \ldots, F_{M}>\rightarrow k\left\{\mathcal{L} T\left(F_{1}, \ldots, F_{M}\right)\right\} .
$$

The map ϕ sends F_{i} to the labeled tree with two nodes: the root, and a child of the root labeled with F_{i}; it is then extended to all of $k<F_{1}, \ldots$, $F_{M}>$ by using the fact that it is an algebra homomorphism.

We say that a rooted finite tree is ordered in case there is a partial ordering on the nodes such that the children of each node are non-decreasing with respect to the ordering. We say such a tree is labeled with $\left\{F_{1}, \ldots\right.$, $\left.F_{M}\right\}$ in case every element, except the root, has an element of $\left\{F_{1}, \ldots, F_{M}\right\}$ assigned to it. Let $k\left\{\mathcal{L O} \mathcal{O}\left(F_{1}, \ldots, F_{M}\right)\right\}$ denote the vector space over k whose basis consists of labeled ordered trees. It turns out that $k\left\{\mathcal{L O T}\left(F_{1}\right.\right.$, $\left.\left.\ldots, F_{M}\right)\right\}$ is also a graded connected algebra using the same multiplication defined above. See [9] for a proof of the following theorem.

We say that a rooted finite tree is heap-ordered in case there is a total ordering on all nodes in the tree such that each node procedes all of its children in the ordering. We define $k\left\{\mathcal{L H O} \mathcal{T}\left(F_{1}, \ldots, F_{M}\right)\right\}$ as above to be the vector space over k whose basis consists of heap-ordered trees labeled with $\left\{F_{1}, \ldots, F_{M}\right\}$. In $[9]$ we show that $k\left\{\mathcal{L H O T}\left(F_{1}, \ldots, F_{M}\right)\right\}$ is also a graded connected algebra [9] and satisfies:

Theorem 2.2 The map

$$
\phi: k<F_{1}, \ldots, F_{M}>\rightarrow k\left\{\mathcal{L H O} T\left(F_{1}, \ldots, F_{M}\right)\right\}
$$

is injective.

Fix N derivations Y_{1}, \ldots, Y_{N} of R and consider M other derivations of R of the form

$$
\begin{equation*}
F_{i}=\sum_{\mu=1}^{N} a_{i}^{\mu} Y_{\mu}, \quad a_{i}^{\mu} \in R, \quad i=1, \ldots, M . \tag{1}
\end{equation*}
$$

Let $\operatorname{End}(R)$ denote the endormorphisms of the ring R. Using the data (1), we now define a map

$$
\psi: k\left\{\mathcal{L T}\left(F_{1}, \ldots, F_{M}\right)\right\} \rightarrow \operatorname{End}(R)
$$

in the following steps.
Step 1. Given a labeled tree $t \in \mathcal{L} \mathcal{T}_{m}\left(F_{1}, \ldots, F_{M}\right)$, assign the root the number 0 and assign the remaining nodes the numbers $1, \ldots, m$. From now on we identify the node with the number assigned to it. Let $j \in$ nodes t, and suppose that l, \ldots, l^{\prime} are the children of j and that j is labeled with $F_{\gamma_{j}}$. Fix μ_{l}, \ldots, μ_{l}, with

$$
1 \leq \mu_{l}, \ldots, \mu_{l^{\prime}} \leq N
$$

and define

$$
\begin{aligned}
R\left(j ; \mu_{l}, \ldots, \mu_{l^{\prime}}\right)= & Y_{\mu_{l}} \cdots Y_{\mu_{l}} a_{\gamma j}^{\mu}, \\
& \text { if } j \text { is not the root } \\
= & Y_{\mu_{l}} \cdots Y_{\mu^{\prime}} \\
& \text { if } j \text { is the root } .
\end{aligned}
$$

We abbreviate this to $R(j)$. Observe that $R(j) \in R$ for $j>0$.
Step 2. Define

$$
\psi(t)=\sum_{\mu_{1}, \ldots, \mu_{m}=1}^{N} R(m) \cdots R(1) R(0) .
$$

Step 3. Extend ψ to all $k\left\{\mathcal{L T}\left(F_{1}, \ldots, F_{M}\right)\right\}$ by k-linearity.
Remark 2.1 In exactly the same way, we define a map

$$
\psi: k\left\{\mathcal{L T}\left(F_{1}, \ldots, F_{M}\right)\right\} \rightarrow \operatorname{End}(R)
$$

by ignoring the ordering of the nodes.

Remark 2.2 Let H denote one of the algebras of labeled trees above, possibly with additional structure such as an ordering or heap ordering. It is easy to check that the ψ map makes R into a left H-module.

Let χ denote the map

$$
k<F_{1}, \ldots, F_{M}>\rightarrow \operatorname{End}(R)
$$

defined by using the substitution (1) and simplifying to obtain an endormorphim of R.

Lemma 2.1 (i) The map ψ is an algebra homomorphism
(ii) and $\chi=\psi \circ \phi$.

Proof: The proof of (i) is a straightforward verification and is contained in [8]. Since χ and $\psi \circ \phi$ agree on the generating set E_{1}, \ldots, E_{M}, part (ii) follows from part (i).

In the later sections, we will also require two other products defined on families of trees. Given $t_{1}, t_{2} \in \mathcal{L} \mathcal{T}\left(F_{1}, \ldots, F_{M}\right)$, define the meld product $t_{2} \odot t_{1}$ to be the labeled tree obtained.by identifying the roots of the two trees. The meld product is then extended to all of $k\left\{\mathcal{L T}\left(F_{1}, \ldots, F_{M}\right)\right\}$ by linearity. Given a derivation $F \in \operatorname{Der}(R)$, let t_{2} be the tree $\phi(F)$ and let $t_{1} \in \mathcal{L} \mathcal{L}\left(F_{1}, \ldots, F_{M}\right)$. Recall t_{2} is a tree consisting of a root and a node laveled F. We define the composition product $t_{2} \circ t_{1}$ to be the tree formed by attaching the subtrees whose roots are the children of the root of t_{1} to the node labeled F of the tree \boldsymbol{t}_{2}.

3 Trees and Taylor Series

Fix a Lie group G of dimension N, with Lie algebra g, and let R denote a ring of infinitely differentiable functions on G. We let $\exp : g \longrightarrow G$ denote the exponential map.

Fix a basis of the Lie algebra g consisting of left invariant vector fields Y_{1}, \ldots, Y_{N}. We will need a map

$$
\sharp: R^{N} \longrightarrow R \otimes g, \quad\left(a_{1}, \ldots, a_{N}\right) \mapsto \sum_{\mu=1}^{N} a_{\mu} Y_{\mu}
$$

and its inverse, which we denote b. We usually write these maps as superscripts, as in $\left(a_{1}, \ldots, a_{N}\right)^{\sharp}$.

We are interested in derivations F of the form

$$
F=\sum_{\mu=1}^{N} a^{\mu} Y_{\mu}, \quad a^{\mu} \in R, \quad \mu=1, \ldots, N
$$

and the corresponding differential equation

$$
\begin{equation*}
\dot{x}(t)=F(x(t)), \quad x(0)=p \in G \tag{2}
\end{equation*}
$$

Let $\exp (t F)(x)$ denote the resulting of flowing for time t along the trajectory of (2) through the initial point $p \in G$. We require two lemmas concerned with Taylor series expansion of a solution of (2). These lemmas will use the maps ϕ and ψ defined in the previous section.

If α is a tree, define the exponential and Meld-exponential of a tree by the formal power series

$$
\begin{gathered}
\exp (t \alpha)=1+t \alpha+\frac{t^{2}}{2!} \alpha^{2}+\frac{t^{3}}{3!} \alpha^{3}+\cdots \\
\operatorname{Mexp}(t \alpha)=1+t \alpha+\frac{t^{2}}{2!} \alpha \odot \alpha+\frac{t^{3}}{3!} \alpha \odot \alpha \odot \alpha+\cdots
\end{gathered}
$$

Lemma 3.1 Assume $f \in R$ and $F \in \operatorname{Der}(R)$. Then
1.

$$
\left(F^{k} f\right)(x)=\left.\frac{d^{k}}{d t^{k}} f(\exp (t F) x)\right|_{t=0}
$$

2. If f is analytic near x, then for sufficiently small t,

$$
f(\exp (t F) x)=\sum_{k=0}^{\infty} f\left(x ; F^{k}\right) \frac{t^{k}}{k!},
$$

where $f\left(x ; F^{k}\right)$ is defined to be $\left(F^{k} f\right)(x)$.
9. If f is analytic near x, then for sufficiently small t,

$$
f(\exp (t F) x)=\left.\psi(\exp (t \phi(F))) f\right|_{x}
$$

where $\alpha=\phi(F)$.
Proof. Assertions (1) and (2) can be found in [12]. Since ϕ is an algebra homomorphism, $\phi\left(F^{k}\right)=\alpha^{k}$. Assertion (3) then follows immediately from Assertion (2).

Lemma 3.2 Assume $f \in R$ and $F \in \operatorname{Der}(R)$ is left-invariant. Let $\alpha=$ $\phi(F)$.Then
1.

$$
f(\exp (t F) x)=f(x)+t D f(x) \cdot F(x)+\frac{t^{2}}{2!} D^{2} f(x)(F(x), F(x))+\cdots
$$

2.

$$
f(\exp (t F) x)=\left.\psi(M \exp (t \alpha)) \cdot f\right|_{x}
$$

9. If $G \in \operatorname{Der}(R)$,

$$
\sharp(b(G)(\exp (t F) x))=\psi(\beta \circ \operatorname{Mexp}(t \alpha)),
$$

where $\beta=\phi(G)$.
Proof. Assertion (1) is simply Taylor's theorem. Assertion (2) follows from Assertion (1) and the definition of the ψ map, since left-invariant vector fields have "constant coefficients" with respect to the basis Y_{μ}. Assertion (3) follows from Assertion (2) and the definition of the ψ, flat and sharp maps.

4 The algorithm

We are interested in numerical algorithms of the Runge-Kutta type to approximate solutions of

$$
\dot{x}(t)=F(x(t)), \quad x(0)=p \in G
$$

where $F \in \operatorname{Der}(R)$. The algorithm depends upon constants c_{i} and $c_{i j}$, for $i=1, \ldots, k$ and $j<i$. For fixed constants, define the following elements of the Lie algebra g

$$
\begin{aligned}
& \bar{F}_{1}=\sum_{\mu=1}^{N} a^{\mu}\left(\nu_{0}\right) Y_{\mu} \in g \\
& \bar{F}_{2}=\sum_{\mu=1}^{N} a^{\mu}\left(\exp \left(h c_{21} \bar{F}_{1}\right) \cdot \nu_{0}\right) Y_{\mu} \in g \\
& \bar{F}_{3}=\sum_{\mu=1}^{N} a^{\mu}\left(\exp \left(h c_{32} \bar{F}_{2}\right) \cdot \exp \left(h c_{31} \bar{F}_{1}\right) \cdot \nu_{0}\right) Y_{\mu} \in g
\end{aligned}
$$

These arise by "freezing the coefficients" of F at various points along the flow of F.

Algorthm 1. Version 1. Let $x_{0}=p$ and put

$$
x_{n+1}=\exp h c_{k} \bar{F}_{k} \cdots \exp h c_{1} \bar{F}_{1} x_{n},
$$

for $n \geq 0$.
Version 2. Let $x_{0}=p$ and put

$$
x_{n+1}=\exp \left(h c_{k} \bar{F}_{k}+\cdots+\exp h c_{1} \bar{F}_{1}\right) x_{n}
$$

for $n \geq 0$.

5 Necessary conditions

We prepare with two lemmas.
Lemma 5.1 Let $f \in R$ and

$$
X_{i}=\phi\left(\bar{F}_{i}\right) \in k\left\{\mathcal{L} T\left(F_{1}, \ldots, F_{M}\right)\right\}[[h]] .
$$

Then

$$
\begin{aligned}
& \bar{F}_{1}(f)=\bar{\psi}(\phi(\bar{F}))(f) \\
& \bar{F}_{2}(f)=\bar{\psi}\left(\phi(\bar{F}) \circ \operatorname{Mexp}\left(h c_{21} X_{1}\right)\right)(f) \\
& \bar{F}_{3}(f)=\bar{\psi}\left(\phi (\overline { F }) \circ \operatorname { M e x p } \left(h c_{31} X_{1} \odot \operatorname{Mexp}\left(h c_{32} X_{2}\right)(f)\right.\right.
\end{aligned}
$$

Here $\bar{\psi}$ is essentially the ψ map followed by "freezing the coefficients" at ν_{0}. More precisely,

$$
\bar{\psi}: k\left\{\mathcal{L} \mathcal{T}\left(\bar{F}_{1}, \ldots, \overline{F_{M}}\right)\right\} \rightarrow \operatorname{End}(R) .
$$

We do this in several steps.
Step 1. Given a labeled tree $t \in \mathcal{C} \mathcal{T}_{m}\left(\bar{F}_{1}, \ldots, F_{M}\right)$, assign the root the number 0 and assign the remaining nodes the numbers $1, \ldots, m$. From now on we identify the node with the number assigned to it. Let $j \in$ nodes t, and suppose that l, \ldots, l^{\prime} are the children of j and that j is labeled with $F_{\gamma_{j}}$. Fix μ_{l}, \ldots, μ_{l}, with

$$
1 \leq \mu_{l}, \ldots, \mu_{l^{\prime}} \leq N
$$

and define

$$
\begin{aligned}
R\left(j ; \mu_{l}, \ldots, \mu_{l^{\prime}}\right)= & Y_{\mu_{1}} \cdots Y_{\mu_{l^{\prime}}} a_{\gamma_{j}}^{\mu_{j}}\left(\nu_{0}\right) \\
& \text { if } j \text { is not the root } \\
= & Y_{\mu_{l}} \cdots Y_{\mu_{l^{\prime}}} \\
& \text { if } j \text { is the root } .
\end{aligned}
$$

We abbreviate this to $R(j)$.
Step 2. Define

$$
\bar{\psi}(t)=\sum_{\mu_{1}, \ldots, \mu_{m}=1}^{N} R(m) \cdots R(1) R(0) .
$$

Step 3. Extend ψ to all $k\left\{\mathcal{L} T\left(F_{1}, \ldots, F_{M}\right)\right\}$ by k-linearity.
It is useful to have an intrinsic characterization of the elements $X_{i} \in$ $k\left\{\mathcal{L T}\left(F_{1}, \ldots, F_{M}\right)\right\}[[h]]$. Order the labels F_{1}, \ldots, F_{M} according to their subscripts: $F_{1}<\cdots<F_{M}$. Let $k\left\{\mathcal{L O H O T}\left(F_{1}, \ldots, F_{M}\right)\right\}$ denote those elements of $k\left\{\mathcal{L T}\left(F_{1}, \ldots, F_{M}\right)\right\}$ satisfying

1. The nodes are heap ordered with respect to the labels F_{1}, \ldots, F_{M}; in other words, the label of a child of a node is (strictly) smaller than the label of the node itself.
2. The children of a node are ordered with respect to the labels F_{1}, \ldots, F_{M}; in other words, the labels of the children of a node are nondecreasing.

Using ordered, heap ordered trees it is easy to keep track of the constants c_{i} and $c_{i j}$ that arise in Taylor series computations. To do this we define a map analogous to the ψ map.

Define

$$
\rho: k\left\{\mathcal{L O H O T}\left(F_{1}, \ldots, F_{M}\right)\right\} \rightarrow \operatorname{End}(R)
$$

as follows
Step 1. Given a labeled tree $t \in \mathcal{L O H O T}\left(F_{1}, \ldots, F_{M}\right)$, with $m+1$ nodes, assign the root the number 0 and assign the remaining nodes the numbers $1, \ldots, m$. From now on we identify the node with the number assigned to it. Fix a node j of t and let l, \ldots, l^{\prime} denote its children. Let F_{γ} denote the
label of node j. Let p_{i} denote the number of children of j labeled with the label F_{i}, for $i=1, \ldots, M$. Let $|p|$ denote $p_{1}+\cdots+p_{M}$. Fix μ_{l}, \ldots, μ_{l} with

$$
1 \leq \mu_{l}, \ldots, \mu_{l^{\prime}} \leq N
$$

and define

$$
\begin{aligned}
R\left(j ; \mu_{l}, \ldots, \mu_{l^{\prime}}\right)= & \frac{h^{|p|} c_{j l} \cdots c_{j l^{\prime}}}{p_{1}!\cdots p_{M}!} Y_{\mu_{l}} \cdots Y_{\mu_{l}} a_{\gamma_{j}}^{\mu_{j}}\left(\nu_{0}\right) \\
& \text { if } j \text { is not the root } \\
= & Y_{\mu_{l}} \cdots Y_{\mu^{\prime}} \\
& \text { if } j \text { is the root } .
\end{aligned}
$$

We abbreviate this to $R(j)$.
Step 2. Define

$$
\rho(t)=\sum_{\mu_{1}, \ldots, \mu_{m}=1}^{N} R(m) \cdots R(1) R(0) .
$$

Step 3. Extend ρ to all $k\left\{\mathcal{L O H O} T\left(F_{1}, \ldots, F_{M}\right)\right\}$ by k-linearity.
Lemma 5.2 Let $X_{i}=\phi\left(\bar{F}_{i}\right)$ and $f \in R$. Then

$$
X_{i}(f)=\sum \rho(t)(f)
$$

where the sum is over all trees $t \in \mathcal{L O H O} T\left(F_{1}, \ldots, F_{M}\right)$ satisfying (i) t consists of $i+1$ or fewer nodes; (ii) the root of the tree has a single child labeled F_{i}.

It is now straigtforward to derive the following necessary condition for a k th order Runge-Kutta algorithm on a group.

Theorem 5.1 A necessary condition for a Runge-Kutta method of order k on a group is that for each rooted, ordered tree t consisting of $k+1$ or fewer nodes

$$
\sum \rho(t)=\frac{1}{(\#(\operatorname{nodes}(t))-1)!},
$$

where the sum is over all $t \in \mathcal{L O H O T}\left(F_{1}, \ldots, F_{M}\right)$ having the same topology as t.

References

[1] J. C. Butcher, "An order bound for Runge-Kutta methods," SIAM J. Numerical Analysis, 12 (1975), pp. 304-315.
[2] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, John Wiley, 1986.
[3] A. Cayley, "On the theory of the analytical forms called trees," in Collected Mathematical Papers of Arthur Cayley, Cambridge Univ. Press, Cambridge, 1890, Vol. 3, pp. 242-246.
[4] A. Cayley, "On the analytical forms called trees. Second part," in Collected Mathematical Papers of Arthur Cayley, Cambridge Univ. Press, Cambridge, 1891, Vol. 4, pp. 112-115.
[5] R. Grossman, "The evaluation of expresssions involving higher order derivations," Journal of Mathematical Systems, Estimation, and Control, Vol. 1, 1990.
[6] R. Grossman and R. Larson, "The symbolic computation of derivations using labeled trees," submitted for publication.
[7] R. Grossman and R. Larson, "Hopf-algebraic structure of combinatorial objects and differential operators," Israeli J. Math., to appear.
[8] R. Grossman and R. Larson, "Solving nonlinear equations from higher order derivations in linear stages," Advances in Mathematics, Vol. 82 (1990), pp. 180-202.
[9] R. Grossman and R. Larson, "Hopf algebraic structures of families of trees," J. Algebra, Vol. 26 (1989), pp. 184-210.
[10] R. Grossman and R. Larson, "Labeled trees and the algebra of differential operators," Algorithms and Graphs, B. Richter, editor, American Mathematical Society, Providence, 1989, pp. 81-87.
[11] R. Grossman and R. Larson, "Labeled trees and the efficient computation of derivations," in Proceedings of 1989 International Symposium on Symbolic and Algebraic Computation, ACM, 1989, pp. 74-80.
[12] V. S. Varadarajan, "Lie Groups, Lie Algebras, and their Representations," Prentice-Hall, Inc., 1974.w

[^0]: *This research was supported by the NSF and EPRI.
 ${ }^{\dagger}$ This research is supported in part by NASA grant NAG2-513 and NSF Grant DMS8904740.
 ${ }^{\text {t }}$ This research is supported by NSF Grant DMS-8904740.

