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Abstract

This report describes preliminary work about intrinsic numerical

integrators evolving on groups. Fix a finite dimensional Lie group G,

let g denote its Lie algebra, and let ]"1, ..., YN denote a basis of g

• We give a class of numerical algorithms to approximate solutions to

differential equations evolving on G of the form:

where

z(t) = F(z(t)), z(O) = p • G,

N

F = a"Y., •
p--1

The algorithm depends upon constants ci and cii, for i = 1,..., k and
j < i. The algorithm has the property that if the algorithm starts

on the group, then it remains on the group. It also has the property

that if G is the abelian group R N, then the algorithm becomes the

classical Runge-Kutta algorithm. We use the Cayley algebra generated

by labeled, ordered trees to generate the equations that the coefficients

ci and c0. must satisfy in order for the algorithm to yield an rth order

numerical integrator and to analyze the resulting algorithms.
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tThis research is supported in part by NASA grant NAG2-513 and NSF Grant DMS-

8904740.

tThis research is supported by NSF Grant DMS-8904740.



1 Introduction

Fix a finite dimensional Lie group G, let g denote its Lie algebra, and let

Yl, ..., YN denote a basis of g . We give a class of numerical algorithms to

approximate solutions to differential equations evolving on G of the form:

x(t) = F(z(t)), z(0) = p E G,

where
N

F= _ @'Y_, a_' E C°°(G).
p=l

The algorithm depends upon constants c_ and cii, for i - l, ..., k and j < i.

The algorithm has the property that if the algorithm starts on the group,

then it remains on the group. It also has the property that if G is the

abelian group rt N, then the algorithm becomes the classical Runge-Kutta

algorithm. Our analysis requires the Cayley algebra generated by labeled,

ordered trees, introduced in [10], Ill] and [6]. We use the Cayley algebra of

trees to generate the equations that the coefficients c_ and cij must satisfy

in order for the algorithm to yield an rt:h order numerical integrator and to

analyze the resulting algorithms.

This is a preliminary report. A final report containing complete proofs,

examples, and a further analysis of the algorithms is in preparation.

2 Families of trees

The relation between trees and Taylor's theorem goes back as least as far as

Cayley [3] and [4]. Important use of this relation has been made by Butcher

in his work on high order Runge-Kutta algorithms [1] and [2]. In this section

and the next, we follow the treatment in [10] and [11].

By a tree we mean a rooted finite tree. If {F1, ..., FM} is a set of

symbols, we will say a tree is labeled with {F1, ..., FM} if every node of the

tree other than the root has an element of {F1, ..., FM} assigned to it. We

denote the set of all trees labeled with {F1, ..., FM} by £:T(F1, ..., FM) .

Let k{£T(F1, ..., FM)} denote the vector space over k with basis £T(F1,

• .., FM) • We show that this vector space is a graded connected algebra.

We define the multiplication in k{£:7"(F1, ..., FM)} as follows. Since

the set of labeled trees form a basis for k{£T(F1, ..., FM)}, it is sufficient

to describe the product of two labeled trees. Suppose tl and t2 are two

labeled trees. Let sl, •. •, sr be the children of the root of tl. If t2 has n % 1



nodes (counting the root), there are (n + 1)r ways to attach the r subtrees

oft1 which have sl, ..., sr as roots to the labeled tree t2 by making each si

the child of some node of t2, keeping the original labels. The product tit2 is

defined to be the sum of these (n + 1) r labeled trees. It can be shown that

this product is associative, and that the tree consisting only of the root is a

multiplicative identity; see [5].

We can define a grading on k{f..7"(Fl,..., FM)} by letting k{f_7"n(F1,

• .., FM)} be the subspace of k{/_7"(F1, ..., FM)} spanned by the trees

with n + 1 nodes. The following theorem is proved in [9].

Theorem 2.1 k{/:7-(F1, ..., FM)} is a graded connected algebra.

If {FI, ..., FM} is a set of symbols, then the free associative algebra

k<Fl, ..., FM> is a graded connected algebra, and there is an algebra

homomorphism

¢: k<Fl,..., FM> ---, k{/:7(F1,..., FM)}.

The map ¢ sends Fi to the labeled tree with two nodes: the root, and a

child of the root labeled with Fi; it is" then extended to all of k<F1, ...,

FM> by using the fact that it is an algebra homomorphism.

We say that a rooted finite tree is ordered in case there is a partial

ordering on the nodes such that the children of each node are non-decreasing

with respect to the ordering. We say such a tree is labeled with {F1, ...,

FM} in case every element, except the root, has an element of {F1, ..., FM}

assigned to it. Let k{f..OT"(F1, ..., FM)} denote the vector space over k

whose basis consists of labeled ordered trees. It turns out that k{f..OT(F1,
• .., FM)} is also a graded connected algebra using the same multiplication

defined above. See [9] for a proof of the following theorem.

We say that a rooted finite tree is heap-ordered in case there is a total

ordering on all nodes in the tree such that each node procedes all of its

children in the ordering. We define k{f..TlOT"(F1, ..., FM)} as above to be

the vector space over k whose basis consists of heap-ordered trees labeled

with {F1, ..., FM}. In [9] we show that k{f_lOT"(Fl,..., FM)} is also a

graded connected algebra [9] and satisfies:

Theorem 2.2 The map

¢ : k<Fl,..., FM> ---*k{/:'HOT"(F1,..., FM)}

is injective.
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Fix N derivations Y1, ..., YN of R and consider M other derivations of

R of the form

N

Fi=Y]_a_Y_, a_eR, i=l,...,M. (1)
t_=l

Let End(R) denote the endormorphisms of the ring R. Using the data (1),

we now define a map

d2 : k{_.7"(F1,..., FM)} "-'* End(R)

in the following steps.

Step 1. Given a labeled tree t E _.7"r_(F1, ..., FM), assign the root the

number 0 and assign the remaining nodes the numbers l, ..., m. From now

on we identify the node with the number assigned to it. Let j E nodes t ,

and suppose that I,...,l' are the children of j and that j is labeled with

F_j. Fix pt,...,pt' with

1 < Pt,...,,at' < N

and define

R(j; m, •••, m,)
ifj is not the root

= V,,... v_,,
if j is the root .

We abbreviate this to R(j). Observe that R(j) E R for j > 0.

Step 2. Define

_(t) =
N

R(m)... R(1)R(0).
_1 ,...,,urn.= 1

Step 3. Extend ¢ to all k{f.7-(F1,..., FM)} by k-linearity.

Remark 2.1 In exactly the same way, we define a map

¢: k{_T(F1, ..., FM)} _ End(R)

by ignoring the ordering of the nodes.



Remark 2.2 Let H denote one of the algebras of labeled trees above, pos-

sibly with additional structure such as an ordering or heap ordering. It is

easy to check that the _b map makes R into a left H-module.

Let X denote the map

k<F1, ..., FM:> ---*End(R)

defined by using the substitution (1) and simplifying to obtain an endor-

morphim of R.

Lemma 2.1 (i) The map ¢ is an algebra homomorphism

(ii) a.d X = ¢ o ¢.

PI_OOI_: The proof of (i) is a straightforward verification and is contained

in [8]. Since )C and ¢ o ¢ agree on the generating set El,..., EM, part (ii)

follows from part (i).

In the later sections, we will also require two other products defined on

families of trees. Given tl,t2 E £T(F1, ..., FM), define the meld product

t2 ® tl to be the labeled tree obtained.by identifying the roots of the two

trees. The meld product is then extended to all of k{£T(F1, ..., FM)} by

linearity. Given a derivation F E Der(R), let t2 be the tree ¢(F) and let

tl E £7"(F1, ..., FM). Recall t2 is a tree consisting of a root and a node

laveled F. We define the composition product t2 otl to be the tree formed

by attaching the subtrees whose roots are the children of the root of tx to

the node labeled F of the tree t2.

3 Trees and Taylor Series

Fix a Lie group G of dimension N, with Lie algebra g, and let R denote a

ring of infinitely differentiable functions on G. We let exp : g -----*G denote

the exponential map.

Fix a basis of the Lie algebra g consisting of left invariant vector fields

Y1, ..., YN. We will need a map

: R N _ R®9,

N

(alj ... ,aN)_ Z auYt_

p.-_l

and its inverse, which we denote _. We usually write these maps as super-
scripts, as in (ax,...,aN) _.
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Weareinterestedin derivationsF of the form

N

F: __,a_'Y_, a_'ER, p= 1,...,N
/J-----1

and the corresponding differential equation

z(t) = F(z(t)), z(0) = p E G. (2)

Let exp(tF)(z) denote the resulting of flowing for time t along the trajectory

of (2) through the initial point p E G. We require two lemmas concerned

with Taylor series expansion of a solution of (2). These lemmas will use the

maps ¢ and ¢ defined in the previous section.

If or is a tree, define the exponential and Meld-ezponential of a tree by

the formal power series

t 2 t 3
_0_ 3

exp(ta) = 1 + t_ + _o_ 2 + 3! + "'"

t 2 t 3

Mexp(t )=

Lemma 3.1 Assume f E R and F E Der(R). Then

1.
dk

(Fkf)(z) = -d--_f(exp(tF)z)1,=o.

2. If f is analytic near z, then for su,O_ciently small t,

oo k tk

f(exp(tF)z) = _ f(x; F )_.1'
k=0

where/(z; F k) is defined to be (Fkf)(x).

3. If f is analytic near z, then for sufficiently small t,

f(exp(tF)x) - ¢(exp(t¢(F)))fl=,

where c_ = ¢(F).

PrtooF. Assertions (1) and (2) can be found in [12]. Since ¢ is an algebra

homomorphism, ¢(F k) = a k. Assertion (3) then follows immediately from

Assertion (2). |



Lemma 3.2 Assume f E R and F E Der(R) is lefl-invariant. Let a =

¢( F). Then

1.

f(exp(tF)x) = f(x) + tDf(x). F(x) + D2f(x)(F(x),F(x)) +....

8,

2/. /f G E Der(R),

f(exp(tF)x) = ¢(Mexp(ta)). f[_.

_(_(G)(exp(tF)x)) = ¢(_ o Mexp(ta)),

where fl = ¢(G).

PROOF. Assertion (1) is simply Taylor's theorem. Assertion (2) follows from

Assertion (1) and the definition of the _b map, since left-invariant vector

fields have "constant coefficients" with respect to the basis Y,. Assertion (3)

follows from Assertion (2) and the definition of the _b, flat and sharp maps.

4 The algorithm

We are interested in numerical algorithms of the Runge-Kutta type to ap-

proximate solutions of

_(t) = F(z(t)), x(O) = p 6 G,

where F 6 Der(R). The algorithm depends upon constants ci and cij, for

i = 1,..., k and j < i. For fixed constants, define tile following elements of

the Lie algebra g

N

N

if'2 = _ a_'(exp(hc21ff'l)"vo)Yu e g
/_=1

N

F3 = _ at_(exp(hc32ff'2)"exp(he31/01) • tc0)Y_ e g
t_=l



These arise by "freezing the coefficients" of F at various points along the
flow of F.

Algorthm 1. Version 1. Let x0 = p and put

zn+l - exp hckffk • • .exp hcll_zn,

for n > 0.

Version 2. Let zo = p and put

Xn+l = exp (hck/_k + "" + exp hclb_l)zn,

for n_> O.

5 Necessary conditions

We prepare with two lemmas.

Lemma 5.1 Let f E R and

Xi - ¢(/_/) E k{/_7"(F1, ..., FM)}[[h]].

Then

-_l(f) = _(¢(/_))(f)

/_2(f) = _(¢(F) o Mexp(hc21Xx))(f)

b_3(f) = _(¢(/_) o Mexp(hc31X1 ® Mexp(hc32X2)(f)

Here _ is essentially the _b map followed by "freezing the coefficients" at

vo. More precisely,

¢: k{Z:T(b_,.-., FM)} --* End(R).

We do this in several steps.

Step 1. Given a labeled tree t E f-.f'm(F1,..., _M), assign the root the

number 0 and assign the remaining nodes the numbers l, ..., m. From now

on we identify the node with the number assigned to it. Let j E nodes t ,

and suppose that l,...,I t are the children of j and that j is labeled with

F.ri. Fix pt,..., #t, with

1 <_ Pt,...,Pt, < N
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and define

R(3; . . . , = Y,,
if j is not the root

= Y,,... Y,,,
ifj is the root .

We abbreviate this to R(j).

Step 2. Define

N

/._ 1 ,...,_m---- 1

R(m)... R(1)R(0).

Step 3. Extend ¢ to all k{/:7(F1, ..., FM)} by k-linearity.

It is useful to have an intrinsic characterization of the elements Xt 6

k{_.T(F1,...,FM)}[[h]]. Order the labels F1,..., FM according to their

subscripts: F1 < ... < FM. Let k{f..OT'lOT(Fl, .., FM)} denote those

elements of k{,gT"(F1, ..., FM)} satisfying

1. The nodes are heap ordered with respect to the labels F1, ..., FM; in

other words, the label of a child of a node is (strictly) smaller than the

label of the node itself.

2. The children of a node are ordered with respect to the labels F1, • •.,

FM; in other words, the labels of the children of a node are nonde-

creasing.

Using ordered, heap ordered trees it is easy to keep track of the constants

ci and cij that arise in Taylor series computations. To do this we define a

map analogous to the ¢ map.
Define

p: k{f..OT-lO'T(F1, ..., FM)} --'-*End(R)

as follows

Step 1. Given a labeled tree t 6 £07107-(F1, ..., FM), with m + 1 nodes,

assign the root the number 0 and assign the remaining nodes the numbers

1, ..., m. From now on we identify the node with the number assigned to

it. Fix a node j of t and let i,..., l' denote its children. Let FT_ denote the

10



label of node j. Let Pi denote the number of children of j labeled with the

label Fi, for i = 1,..., M. Let IPl denote Pl +'" + PM. Fix Pl,... ,Pl, with

1 __Sm,....,t,_ N

and define

n(J; _, ••., _t,) hlplcjl...cjvYm _"= .......... Y_,,_; (.o)
PI!'" "PM[

if j is not the root

-- y...y..
if j is the root .

We abbreviate this to R(j).

Step 2. Define

N

p(t) =
/.$1,...,/._m = 1

R(m)... R(I)R(O).

Step 3. Extend p to all k{£OTlOT(Fl,..., FM)} by k-linearity.

Lemma 5.2 Let Xi -- ¢(Fi) and f E R. Then

Xi(f) --__,p(t)(f),

where the sum is over all trees t E £OT"IOT(F1, ..., FM) satisfying (i) t

consists of i + 1 or fewer nodes; (ii) the root of the tree has a single child
labeled Fi.

It is now straigtforward to derive the following necessary condition for a

kth order Runge-Kutta algorithm on a group.

Theorem 5.1 A necessary condition for a Runge-Kutta method of order k

on a group is that for each rooted, ordered tree t consisting of k+ 1 or fewer
nodes

1K"" t x
z_.ptt, = (#(nodes (t)) - l)!'

where the sum is over all t E £OTIOT(F1, ..., FM) having the same topol-

ogy as t.
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