1,147 research outputs found

    Symbolic codes for rotational orbits

    Get PDF
    Symbolic codes for rotational orbits and “islands-around-islands” are constructed for the quadratic, area-preserving H´enon map. The codes are based upon continuation from an antiintegrable limit, or alternatively from the horseshoe. Given any sequence of rotation numbers we obtain symbolic sequences for the corresponding elliptic and hyperbolic rotational orbits. These are shown to be consistent with numerical evidence. The resulting symbolic partition of the phase space consists of wedges constructed from images of the symmetry lines of the map

    Homoclinic Bifurcations for the Henon Map

    Full text link
    Chaotic dynamics can be effectively studied by continuation from an anti-integrable limit. We use this limit to assign global symbols to orbits and use continuation from the limit to study their bifurcations. We find a bound on the parameter range for which the Henon map exhibits a complete binary horseshoe as well as a subshift of finite type. We classify homoclinic bifurcations, and study those for the area preserving case in detail. Simple forcing relations between homoclinic orbits are established. We show that a symmetry of the map gives rise to constraints on certain sequences of homoclinic bifurcations. Our numerical studies also identify the bifurcations that bound intervals on which the topological entropy is apparently constant.Comment: To appear in PhysicaD: 43 Pages, 14 figure

    Rotation numbers of invariant manifolds around unstable periodic orbits for the diamagnetic Kepler problem

    Full text link
    In this paper, a method to construct topological template in terms of symbolic dynamics for the diamagnetic Kepler problem is proposed. To confirm the topological template, rotation numbers of invariant manifolds around unstable periodic orbits in a phase space are taken as an object of comparison. The rotation numbers are determined from the definition and connected with symbolic sequences encoding the periodic orbits in a reduced Poincar\'e section. Only symbolic codes with inverse ordering in the forward mapping can contribute to the rotation of invariant manifolds around the periodic orbits. By using symbolic ordering, the reduced Poincar\'e section is constricted along stable manifolds and a topological template, which preserves the ordering of forward sequences and can be used to extract the rotation numbers, is established. The rotation numbers computed from the topological template are the same as those computed from their original definition.Comment: 8 figures, 1 tabl

    Steve Smale and Geometric Mechanics

    Get PDF
    Thus, one can say-perhaps with only a slight danger of oversimplification- that reduction theory synthesises the work of Smale, Arnold (and their predecesors of course) into a bundle, with Smale as the base and Arnold as the fiber. This bundle has interesting topology and carries mechanical connections (with associated Chern classes and Hannay-Berry phases) and has interesting singularities (Arms, Marsden, and Moncrief, Guillemin and Sternberg, Atiyab, and otbers). We will describe some of these features later

    Nonlinear rotations on a lattice

    Get PDF
    We consider a prototypical two-parameter family of invertible maps of Z2\mathbb{Z}^2, representing rotations with decreasing rotation number. These maps describe the dynamics inside the island chains of a piecewise affine discrete twist map of the torus, in the limit of fine discretisation. We prove that there is a set of full density of points which, depending of the parameter values, are either periodic or escape to infinity. The proof is based on the analysis of an interval-exchange map over the integers, with infinitely many intervals.Comment: LaTeX, 34 pages with 4 figure
    • …
    corecore