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Abstract

Symbolic codes for rotational orbits and “islands-around-islands” are constructed for the
quadratic, area-preserving Hénon map. The codes are based upon continuation from an anti-
integrable limit, or alternatively from the horseshoe. Given any sequence of rotation numbers
we obtain symbolic sequences for the corresponding elliptic and hyperbolic rotational orbits.
These are shown to be consistent with numerical evidence. The resulting symbolic partition
of the phase space consists of wedges constructed from images of the symmetry lines of the
map.

1 Introduction

Symbolic dynamics has been profitably used in the study of many dynamical systems since its
invention by Hadamard in 1898 and naming by Morse and Hedlund in 1938 [1, 2, 3]. Among its
many uses, symbolic dynamics can provide useful information about topological invariants such
as the enumeration of periodic orbits and the entropy. It can also lead to numerical methods
for finding periodic, homoclinic and chaotic orbits, and facilitate characterization of transport.
Symbolic dynamics applies most directly to systems that are hyperbolic; indeed it was invented
to describe geodesics on surfaces with negative curvature and famously applies to hyperbolic
toral automorphisms and the Smale horseshoe.

In this paper we continue the study, began in [4], of the coding of orbits of Hénon’s quadratic,
area-preserving mapping [5]. Previously we used the concept of an anti-integrable (AI) limit [6]
to define codes by continuation (see §2) and studied the bifurcations of homoclinic orbits that
destroy the horseshoe of this map. In the current paper we study the codes of orbits that are
born in rotational bifurcations of the elliptic fixed point. The rule that we obtain identifies the
subset of orbits in the horseshoe that become rotational orbits, encircling the elliptic fixed point
of the Hénon map.

The extension of symbolic dynamics to systems with stable orbits has proved difficult, ex-
cept for the case of one-dimensional maps where classical results apply [7, 8]. The dissipative
Hénon mapping [9] is a natural system to attempt the generalization of these results to multidi-
mensional, nonhyperbolic systems, especially as it reduces (when b = 0) to the one-dimensional
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logistic map. Just as the symbols for the logistic map are based on the itinerary of an orbit rel-
ative to the critical point, Grassberger and Kantz [10] proposed that the symbols for the Hénon
map could be determined by partitioning the plane using the stable and unstable foliation and
their “primary homoclinic tangencies,” that is, points at which the local curvature of the un-
stable manifold diverges. This led to the concept of a “primary pruning front” in the symbol
plane as determining the allowed sequences for a particular map [11]. Symbol sequences defined
in this way can exhibit monodromy, that is, morph into new sequences on paths that encircle
codimension-two bifurcations, such as a cusp [12]; along these paths, the primary tangencies
may exhibit discontinuities [13]. As far as we know, this method has not been applied to the
area-preserving case (b = £1), though it has been applied to other dissipative systems, such as
the cubic, generalized Hénon map [14].

Several other methods have also been proposed to obtain symbolic codes for orbits of the
Hénon map. Biham and Wenzel defined the codes as the signature of a pseudo-gradient method
for finding periodic orbits [15]. Sterling and Meiss proved that this technique works sufficiently
close to an anti-integrable limit [16]. Unfortunately, it does not always converge to fixed points,
and sometimes gives two codes for the same orbit [17]. Hansen and Cvitanovic defined codes by
approximating the two-dimensional map near b = 0 by a sequence of one-dimensional unimodal
maps [18]. The code defining an orbit can change if it crosses the critical point of one of the
approximating maps.

Primary homoclinic tangencies have also been used to construct codes for the area-preserving
standard map. For parameter values where elliptic periodic orbits and their associated islands are
small (large k), Christiansen and Politi have shown that a primary set of homoclinic tangencies
can be identified by their proximity to the dominant fold lines in the map [19]. Gaps between
these points can be connected with symmetry lines associated with the reversibility of the map
to form a curve that creates a symbol partition [20]. The symbol boundary can be modified to
include elliptic islands, [21, 20], by choosing appropriate images of the symmetry lines. This
method does not explain why symmetry lines are important, nor does it give a recipe for selecting
the proper lines.

In §3 we give a rule for constructing the symbolic codes for orbits of the Hénon map with any
given rotation number. These codes are consistent with those obtained by numerical continuation
from the AI limit. We also show that these codes have definite symmetry properties, and that
the symbolic partition in an elliptic island has the form of a wedge with apex at the elliptic
fixed point and whose boundaries are constructed from specific symmetry lines. These wedges
are similar to those found by Christiansen and Politi for the standard map.

Our rotational codes are closely related to those for maps with a natural angle variable, for
example for circle maps [22, 23] and cat maps [24]. We review these ideas in the Appendices.

We also develop a systematic rule for obtaining the symbolic codes of rotational orbits with
“higher class” [25], that is to “islands-around-islands,” in §4-5. These correspond, for example,
to orbits that rotate around orbits that rotate around the elliptic fixed point; thus they are
defined by a sequence of rotation numbers. Our construction provides codes for the elliptic
and hyperbolic orbits for each sequence of rotation numbers. Again the codes are shown to be
consistent with the numerical evidence. The resulting symbolic partition is constructed from a
sequence of wedges defined by symmetry lines.

A different method for constructing symbolic codes for islands-around-islands was given
previously [26, 27]; however in these cases the entire set of orbits in an island was assigned the
same sequence and the motivation was to study the transport implications for chaotic orbits
outside the islands [25, 28].



2 Symbolic codes for the Hénon map by continuation

The area-preserving Hénon diffeomorphism can be written as'

(z,2') — f(z,2)) = (¢/, —x — k + 2% . (1)

An orbit of this map is written as a bi-infinite sequence O = (...x_1, g, 1 . ..) with (441, x442) =
f(z¢, 2441). The dynamics of this map exhibit the full range of behavior of typical area-preserving

maps, including infinite cascades of period-doubling bifurcations, invariant circles, cantori, trans-

port, twistless bifurcations, etc. [29, 30, 31]. As k increases, the dynamics become increasingly

chaotic, and beyond a critical value, k = kg, the set of bounded orbits forms a Smale horseshoe

(this set has measure zero—almost all orbits escape to infinity). It was proved by Devaney and

Nitecki that there is indeed a hyperbolic horseshoe when k > 5 + 2v/5 > kg [32, 16]. Our

numerical studies indicate that [16, 4]

ky ~ 5.699310786700 . (2)

The dynamics of the bounded orbits in the hyperbolic horseshoe is conjugate to the full shift
on two symbols. A simple way of constructing these symbols for the Hénon map is to define

S¢ = sgn Ty (3)

because the bounded invariant set is divided by the coordinate axes, see Fig. 1.
An alternative method for obtaining these codes is to view the Hénon map as arising by
continuation from an anti-integrable (AI) limit [6, 33]; for Eq. (1) we define

; (4)

z =€x, with e =
k+1

to rescale the map as

e(zp1+ 21 —€) =22 —1.

To define €, we assumed that £ > —1, but this is not much of a restriction since there are no
bounded orbits for the Hénon map when k& < —1. The case ¢ — 0 is the AI limit [16, 4]. In
this limit orbits reduce to sequences z; = 41, where the choice of sign is arbitrary—the map
is equivalent to the full shift on the symbols +. Every such sequence continues away from the
limit to an orbit of the Hénon map. Conversely, when there is a horseshoe these symbols agree
with Eq. (3), and every bounded orbit of the Hénon horseshoe continues to an orbit at the Al
limit.

Each point in the horseshoe is represented by a bi-infinite sequence of signs, together with
the binary point representing the current position:

(.I‘t, .Z‘t+1) s = ( o St—285t—1+5t St+1 - - )
We denote the right-shift by o, so that
O'S:<...St_18t.8t+1...) (5)

When there is a hyperbolic horseshoe for k£ > kg, the Hénon map f, restricted to the set of
bounded orbits, is conjugate to the shift map o acting on the sequence s that is the code for x.

"We do not use Hénon’s original form, (£,1) — (1 — a€? + n,b€), since it becomes linear at ¢ = 0, and is
orientation-reversing for b > 0. Our form can be obtained by setting b = —1, and defining k = a, z = kn, and

' = —k€.



Figure 1: Stable (blue) and unstable (red) manifolds of the hyperbolic fixed point for the Hénon map when
k = 6. The closure of the intersection of these manifolds is the horseshoe of bounded orbits.

We use continuation away from the AI limit to find orbits with a given code as k varies [16].
Such a “global coding” is complete if every smooth one-parameter family in the extended space
R2 x R (phase space times parameter) connects to the Al limit. Because of twistless bifurcations
it is not enough to simply take the map parameter k as a family parameter [31, 4]. We do not
know any counterexample to this “smooth no-bubble conjecture”, and adopt it as our working
hypothesis.

We use the signs + and — to denote the symbols s;. For example the hyperbolic fixed
point, at x; = 1 4+ v/1 + k, has code s; = +; we denote the bi-infinite sequence for this orbit by
s = (+)°°. In general a period-n orbit is given by the bi-infinite concatenation of a sequence of
n symbols; we represent this with a superscript co: (sg s1 ... sp—1)°°. We often denote repeated
symbols with a superscript, thus (——|—7)°O is a period-8 orbit. The parity of a finite symbol
sequence is defined to be the product of its symbols:

n—1
(8081 ... Sn—1) = H St . (6)
t=0

Equivalently the parity is even or odd if the number of minus signs is as well. A parity can be
assigned to any periodic orbit by computing the parity of its fundamental sequence; for example,
(= ++4+)>) = -1

Using the continuation method, we can follow orbits from the AT limit to visualize the relation
between the symbolic codes and the positions of the corresponding points in phase space. If we
distinguish points solely by a single symbol, sg, this gives a partition of the phase space into
regions corresponding to the 4+ and the — code. Using the conjugacy between the shift ¢ and



the Hénon map on these orbits, we could reconstruct the full symbol sequence for each orbit by
following the sequence of visits to the two elements of the partition.

Figure 2: Points on the 99 periodic orbits of the Hénon map with periods up to 10 for two different parameter
values. In the left panel k = 24 (¢ = 0.2) and in the right k£ = 5.5 (¢ &~ 0.392). The blue (red) curves are the initial
lobes of the stable (unstable) manifolds for the hyperbolic fixed point, (+)°°, located in the upper right corner.

In Fig. 2, a point is colored cyan if so = —, and magenta if so = +. We use the scaled
coordinates (z,2’), defined in Eq. (4) for the plots, so that as k¥ — oo all bounded orbits
converge to the four AI states (z,2’) = (£1,41). As k decreases the trajectories move away
from these points as shown in the left frame of Fig. 2. For this value of € it can be proven
that all of the trajectories reside within the union of four small squares with sides My, =~ 0.568
that are centered on the four AI states [16]—actually we observe that they are contained in
smaller rectangles bounded by segments of the stable and unstable manifolds of the hyperbolic
fixed point. These segments intersect at points on the “type one” homoclinic orbits with symbol
sequences +°. — (=) — 4+ and +*°. — (+) — +°° [4]. As € increases the bounded orbits move
further from the Al states, and the stable and unstable manifolds of (+)°° approach their first
tangency. Just below k = kg (right panel of Fig. 2) the two type-one homoclinic orbits have
been destroyed in a homoclinic bifurcation and only a subset of symbol sequences are now
allowed. Nevertheless, the symbol boundary is still very simple (at least up to this period), and
is delineated by the near tangency between the first lobes of the stable and unstable manifolds.

One phenomenon special to area-preserving maps is the existence of elliptic periodic orbits.
For example, the second fixed point, (—)* (at z; = 1 —+/1 + k) becomes elliptic at k = 3. More
generally this orbit has positive residue for any k > —1. Recall that Greene’s residue, r, is a
convenient encoding for the linear stability of an orbit of an area-preserving map: given a point
(z,2") on a period-n orbit of f, then

— 1 n /

= ;2T (Df"(z,2)) (7)
Orbits are elliptic when 0 < r < 1, hyperbolic when r < 0 and reflection hyperbolic when
r > 1. For example, the fixed point (—)* is elliptic for —1 < k < 3 and at k = 3 undergoes a



period-doubling bifurcation becoming hyperbolic with reflection. More generally [4] for a period
n orbit, as k — oo,

r —W(s)i(élkr)"ﬂ . (8)

Thus the parity of a symbol sequence determines the character of the orbit for large k. Often,
we refer to orbits that are born with positive residue as “elliptic” even though they typically
undergo bifurcations that destroy their stability and may even smoothly continue to orbits with
negative residue.

Our goal for this paper is to investigate the structure of the symbol partition when there
are elliptic periodic orbits and their associated rotational orbits. In particular, Fig. 3 shows
that the symbol boundary near an elliptic orbit exhibits a structure radically different from the
horseshoe shown in Fig. 2. In the following sections, we will explain the wedge shaped symbol
boundary that eminates from the elliptic fixed point in Fig. 3. To do this, we must construct
the codes for rotational orbits.

Figure 3: Periodic orbits of the Hénon map for k = 2.0. Plotted are points on all periodic orbits up to period
10 that still exist, as well as all rotational (class-one) orbits with periods up to 31 that exist at this parameter
value. Points with sop = 4+ (—) are colored magenta (cyan). It is apparent that the first few lobes of the stable

and unstable manifolds no longer delineate the symbol boundary in the vicinity of the elliptic fixed point.

3 Rotational (Class-One) Orbits

One special class of orbits for the Hénon map are the rotational orbits—those that are created
by a rotational bifurcation of the elliptic fixed point (—)°°. Generally, a rotational bifurcation



occurs when the linearized rotation number at an elliptic fixed point passes through a given
rotation number 0 < w < %, i.e., when

1 . A
r= 1(2 — 2T _ 72Ty — gin? (nw) (9)

Since the residue of the elliptic fixed point is r((—)*°) = /1 + k, we can solve Eq. (9) for k or
w to obtain

k(w) = cos(2mw)(cos(2mw) — 2)

1/4
w(k) = %arcsin ((1“‘\/];)) . (10)

Since the residue of a period-n orbits grows like k™2 as k — oo it is more convenient for
numerical work to use the scaled residue

1

—— sen(r) [4lr)"/" (11)

p=

[

Notice p =0 < r =0, and as k — oo, Eq. (8) implies that p — +2.

When w(k) is rational, a rotational bifurcation typically? creates a pair of orbits, one elliptic
and one hyperbolic, we call these class-one rotational orbits following Meiss [25] (the two fixed
points are therefore class-zero orbits). A theorem of Franks implies that there are class-one
period ¢ orbits for each rational rotation number p/q whenever 0 < p/q < w(k) [35]. Each
elliptic class-one periodic orbit is typically encircled by rotational orbits of class-two, giving rise
to “island chains.” We will discuss these higher class orbits in §4. When w(k) is irrational and
Diophantine, Moser’s twist theorem implies that the rotational bifurcation gives birth to an
invariant circle [36]. If w(k) is not sufficiently irrational, we expect that a cantorus is born (as
indicated by Aubry-Mather theory, though we know of no proof of this for the Hénon map).

We begin this section with some observations from our numerical experiments. We then
construct a rule that generalizes these observations and appears to be consistent with all class-
one orbits. This construction has a natural geometric interpretation in terms of circle maps.
The code that we obtain is related to that for rotational orbits in other systems, for example
the codes obtained for minimizing rotational orbits in twist maps by Aubry [37], for cat maps
by Percival and Vivaldi [24], billiards by Bécker and Dullin [38], and for circle maps by Lin [3].
We discuss some of these relationships in the Appendices.

3.1 Preliminary Numerical Observations

It was not obvious to us which of the possible period-n orbits at the AI limit should be identified
as the class-one rotational orbits. Thus we began by searching for periodic codes that continue to
orbits that collide with (—)* at k(w) defined by Eq. (10). A brute force way to systematically
search for rotational orbits, would be to choose a period and continue all periodic codes of
that length from the AI limit until the corresponding orbits bifurcate. For example, at period
4 there are three distinct periodic codes: (— — —+)>,(— —+4)*°, and (— + ++)*>°. Upon
continuation, we discover that the orbits corresponding to (— — ++)> and (— 4+ ++4) collide
when k = k(i) = 0 at the position of the elliptic fixed point. These two orbits have negative
and positive residues, respectively (in agreement with Eq. (8)) during their entire lifetimes, and

*When the period is larger than four. The tripling and quadrupling bifurcations are special, see e.g. [34].



thus they represent the hyperbolic and elliptic % orbits. In our previous numerical experiments,
we followed each of the 1.47 million orbits of the Hénon map with periods up to 24 in order to
obtain a numerical estimate of the parameter at which the Hénon map horseshoe is destroyed [4].

We can actually considerably reduce the number of sequences that need to be checked by
computing the rotation number of the symbol sequence using the “self-rotation number” [39].
The self-rotation number of symbol sequence is the same as that of the orbit, and is unchanged as
k varies. As shown in Table 2 of [39] the self-rotation number of (— — —+)> is 3, thus it cannot
be one of the rotational period-four orbits—indeed it arises in a period-doubling bifurcation of
the period-two orbit, (—+)>.

Proceeding in this way we identified all of the class-one rotational orbits with periods less
than 20 [40]. There are 118 such orbits; the first few of these are shown in Table 1. In the
table we chose a canonical permutation to order these sequences (we will discuss the canonical
ordering in §3.2).

Our numerical observations indicate that all of the class-one rotational orbits smoothly
continue to the AI limit; we know of no proof of this observation. We observe that the codes
for the negative and positive residue orbits differ only in one symbol, the second: indeed, this
symbol is simply the sign of the residue, indicated by a * in the symbol sequence.

At this point the pattern for the rotational codes that we will describe in the next section
became clear.

3.2 Rotational Codes

Since the dynamics on a smooth invariant circle with irrational rotation number w is conjugate to
a rigid rotation with this rotation number, it is natural to construct a symbolic code for rotational
orbits based this conjugacy. Letting 6 denote a point on the circle with unit circumference, the
rigid rotation is

0—60+w modl = 60, ={wt+a}, (12)

where « is the initial phase. Here {z} = x — || denotes the fractional part of x, and |z| =
maxpez{p : p < x} is the floor function. To agree with our sign choice in Eq. (1), we will depict
this as a clockwise rotation, see Fig. 4.

To obtain the codes for the circle map, divide the circle into two wedges

W_(w) = (—w,w)

W) = w1~ o] 13)

see Fig. 4. Note that W_(w) is open and W, (w) is closed, and that these wedges divide the
circle into two parts for any 0 < w < %

Definition 1 (Rotational (class-one) Code). A point § € Ws(w) is defined to have symbol
s. The code for the rotational orbit 0; = wt + « is

st =+ when 6 € Wi(w). (14)

There are two distinct types of codes that we distinguish by the value of the initial phase a.
When a = 0, the first two symbols of the code are always —+ while if & € (—w,0) then they
are ——. Indeed, if a@ # {jw} for any integer j, then the symbol — always appears doubled in
the code.® To distinguish these two cases, we call the case that o # {jw} for some j € Z a
hyperbolic-code, and the alternative case an elliptic-code.

3For hyperbolic codes for rational w this is Lemma 6.11 in [40].



(—*+++——+H™
(—x+——++——++)
(¢ ——F+——+-—=4)

-0.6582603930
0.3048831897
1.738564049

-0.4217831728
0.5506136016
2.225483132

w Code k(w) PD

g (%)%° -1 3

3 (=4 3 !

: (—*4)> i 3

1 (— % ++) 0 0.2174036214"
1 (— %+ + )™ 755 -0.2404626622*
2 (% — — ) T+5v/5 2.822983929*
1 (— % 14 _3 -0.4766507416
1 (— % +2)> -0.8582400707 -0.6124008240
2 (—*+——++)> 0.4945574340 0.7226142786
8 (— % —44)® 2.613682637 3.099045238
L (— % 46) L2 -0.6974167690
g (=% — — 4 — —4) NG 2.4246536398
1 (=% +7)> -0.9452647974 -0.7546238304
2 (—*++——+++)° | -0.3171426657 -0.0739574299
4 (— % —64)= 2.762407463 3.187557989
L (— % 48) BB -0.7954212145
B (b ——t—— )™ —143v5 0.8673114431
L (— % 49)%° -0.9747995591 -0.8258655309
2

11

3

11

4

11

5

5 (— % —84)> 2.839612714 3.215096092
L (= % 110y 53 -0.8493921692
S (=% —4 4 —4q)ee 243 2.908515654

T The smaller real root of 16k* — 64k% — 8k% + 1

* The two real roots of 4096k% — 13312k + 512k* + 17344k — 7520k% — 16276k — 3251

Table 1: Codes for class-one rotational orbits. The * represents £ for positive and negative residue orbits,
respectively. The third column is the value Eq. (10) at which the orbits collide with (—)* in a rotational
bifurcation. The column “PD” is the value of k for which the positive residue orbits undergo period-doubling.
The elliptic % and 1—50 orbits actually are created earlier in saddle-center bifurcations at k£ = 1.0 and k& = 0.7063926,

respectively.




0,=2m

Figure 4: Construction of the rotational code for w = y2 (where « is the golden mean) using the wedges
W4 (w). The orbit shown corresponds to the elliptic code with a = 0.

Note that whenever w # % there are at least two distinct codes. For example if we set w = %,

then the three possible elliptic codes are —++, + —-+ and ++ —, all of which represent the same
periodic orbit with code, (— + +)°. Similarly all the hyperbolic codes are cyclic permutations

of (— —+)*. In the exceptional case, w = %, there is only one period-two code, the elliptic
code, (—+)%°.4

It is easy to see that a hyperbolic code consists of blocks of the form — —+™"2 and — —+""1,
where m = |w™!], For example, denoting the golden mean by v = 1+2\/‘F’, then w = 772 ~

0.381966011. Therefore y=2 € (%, %) and m = 2, so that the code is built from the blocks ——
and — — 4. For example if we choose a = —.1, we obtain

O s e R e T e e P

For irrational w there are infinitely many hyperbolic codes, depending upon the choice of . By
contrast, there is only one elliptic code, up to cyclic permutations, because any choice o = jw

generates the same sequence of symbols. When o = 0 the elliptic code for w =y~ 2 is

(it ——F - ———+ L),

in agreement with the first few points shown in Fig. 4. As previously asserted the “first” two
symbols in this code are —+, but all other blocks have an even number of —’s.

When w is rational, Def. 1 gives rise to exactly two distinct codes (up to cyclic permutation).
As we will see, these correspond to the two class-one orbits with this rotation number.

Lemma 1. For any rational rotation number in (0, %), there are exactly two codes (the elliptic
and hyperbolic codes) up to cyclic permutations.

Proof. Set w = g, where p,q € Z are relatively prime. The periodic orbit consists of g evenly
spaced points on the circle, and subsequent points are obtained by shifting p points around the
circle. Partition the circle into ¢ half-open sectors

Sj=(%"—=],j=0,1,...q—1. (15)

4This agrees with the fact that the Hénon map also has only one period-2 orbit.

10



Then each S; contains exactly one point of the orbit. Note that W_ consists of the interior of
the union of 2p of the §;

p—1
W_=Int | J S,
Jj=-p

(where the indices are taken mod ¢) and the interior of W5 is the union of the remaining ones

g—p—1
It W, =Int | J S;.
Jj=p

It is immediately clear that each orbit with a € Int Sy has the same (hyperbolic) code, since
the points fall in the interiors of exactly the same sequence of S;, and therefore in the same
sequence of W;. Similarly, for any j, the codes for orbits that have o € Int S; are all identical.
Finally since an orbit that starts in the interior of Sy reaches S; after some number, ¢, steps,
then the codes of orbits that start in these two sectors are the same up to cyclic permutation.

For the elliptic case we set o = j/q for integer 0 < j < ¢q. Each of these orbits corresponds
to the same set of points on the circle (the boundary points of the S;), differing only by cyclic
permutation. Thus their codes also differ only by cyclic permutation.

Finally the elliptic code has only 2p — 1 points in W_(w), while the hyperbolic code has 2p
points. Thus these two codes differ. O

We choose a canonical ordering for these two codes by selecting o = 0 for the elliptic case
and o = —2%1 for the hyperbolic case (this mimics the interleaving of the two orbits of an island
chain). Thus the elliptic code always starts with —+ and the hyperbolic with ——. From the
third symbol onwards the two codes are identical.

Lemma 2 (Properties of Rotational Codes). The canonically ordered elliptic and hyperbolic
codes for periodic orbits differ only in their second symbol: s; = — for hyperbolic and s1 = +
for elliptic codes. Elliptic codes have odd parity and hyperbolic codes have even parity.

Proof. This follows immediately from the fact that both orbits initially lie in the sector S;_1
defined in the previous lemma. Thus they visit exactly the same sectors in the same order. The
only symbolic difference occurs at t = 1 where the elliptic point lies at 6; = w € W, while the
hyperbolic point is in the interior of S,_;, which is in W_. The elliptic code has odd parity
since it has exactly 2p — 1 points in W_. O

A convenient representation for rotational codes is the Farey tree, Fig. 5. The tree shows
that the canonical hyperbolic code of a Farey daughter is simply the concatenation of the codes
of its hyperbolic parents (putting the code from the larger rotation number on the left). This
fact is proved in Appendix A.3.

As we will see in §3.5, the wedge shaped symbol boundaries in Fig. 4, translate into a similar
wedge for the symbol boundary in the phase space of the Hénon map. However, before examining
this, we present additional numerical evidence that lead to Def. 1.

3.3 Numerical Observations

While there is no proof that the codes for the rotational orbits of the Hénon map are generated
by Eq. (14), we conjecture that this is the case:

Conjecture 1. FEvery class-one rotational orbit of the area-preserving Hénon map smoothly
continues to an orbit of the horseshoe with code defined by Eq. (14).

11



0/1 (+) 172 (--)

1/3
()
1/4 2/5
1/5 2/7 3/8 3/7
(—-+++) (—-4--++) (--—-4--+) (------ +)
1/6 2/9 311 3/10 411 5/13 5/12 419
(-=++++) (-=tt=tt+) (-=t=tt-=tt) (c——tott) (-===b=tt) (-=-=t==t-=t) (. F--4) (. +)

Figure 5: Farey tree for the base % and % up to level three, and the corresponding codes for the hyperbolic
rotational orbits. The code for % does not correspond to a real orbit, as there is no “hyperbolic” period-two orbit.

The codes for the elliptic rotational orbits are obtained by flipping the second symbol.

As noted in §3.1, our initial observations indicate that this conjecture is true up to period 20.
In this section we show in addition that Eq. (14) generates the correct codes for all rotational
orbits up to period 99; i.e., that these orbits are born in a rotational bifurcation of elliptic fixed
point at the value of k given by Eq. (9). To test this we must numerically continue each such orbit
to parameter value where its residue vanishes. We observe that each hyperbolic rotational orbit
has a negative residue near the Al-limit, and that » monotonically increases as k decreases until
it reaches zero at a rotational or saddle-center bifurcation. Similarly elliptic rotational orbits
have positive residues near the Al-limit, and r monotonically decreases to zero as k decreases.
In Fig. 6 we show the scaled residue, Eq. (11), as a function k for five elliptic and hyperbolic
class-one orbits.
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Figure 6: Left Panel: Scaled residue Eq. (11) as a function of the deviation k from k(w) for 5 class-one rotational
orbits. Right panel: an enlargement of the residue for the w = 1% orbit in the vicinity of the rotational and twistless

bifurcations.

Thus it would appear that a quick method for detecting the rotational bifurcation would be
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to find the parameter value, kq(w) for the first zero of r moving away from the AI limit. In
Fig. 7 we plot the number of digits of agreement between k;(w) and k(w) for the 1501 class-one
rotational orbits up to period 99 as a function of rotation number. This shows that the first zero
crossing of r corresponds to the rotational bifurcation for most of the orbits. The dashed curve
in the right hand pane of the figure shows the cumulative distribution function for the precision
data for the complete set of 1501 orbits. There are two groups of orbits for which the apparent
precision is lower than 7 digits.
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Figure 7: Left Panel: Plot of —log,,(ki(w) — k(w)) for the 1501 class one rotational orbits with periods up to
99. The right panel shows the distribution of digits of precision in the 1501 numerical bifurcation values (dashed
line), and 1305 values for orbits with w > 0.025 and either k(w) < 1% or k(w) > 2 (solid line). The latter case
are the class-one orbits created at parameter values where the Hénon map has twist and the rotation frequency

is large enough to avoid numerical difficulties.

One of these groups corresponds to orbits with w € [0.29021, %], shown by the (green)
dashed lines in Fig. 7. This rotation number interval corresponds to the parameter interval
2 < k < 2 where the twist of the Hénon map is “anomalous” [31]. By “normal” twist we mean
that the rotation number decreases monotonically moving away from the elliptic fixed point.
In the anomalous interval the rotation number increases near the elliptic point before reaching
a maximum and eventually decreasing. For orbits in this interval the first zero of the residue
corresponds to a saddle-node bifurcation at kj(w) < k(w). For example, in the right panel of
Fig. 6 we show an enlargement of the scaled residue plot for the 13—0 orbits. For this case, the
first zero crossing along the curve from the Al limit occurs at k & 0.7063832 for the hyperbolic
orbit and k =~ 0.7063926 for the elliptic orbit (these points are almost indistinguishable in the
figure). The rotational bifurcation (which is the reference value in Fig. 7) corresponds to the
second zero crossing along each curve; this occurs at k(3/10) ~ 0.7135255. This explains the
apparent loss in accuracy in the second interval (bounded by the green dashed lines) in Fig. 7.

Our continuation method could not find the bifurcation values for orbits with w < 4—11 (indi-
cated by the (red) dashed line in Fig. 7) to more than 4 digits. This is due to the ill-conditioning
of the equations as k — —1. In this region the elliptic and hyperbolic fixed points approach
one another and the map is nearly integrable. This is reflected in the fact that periodic orbits
very nearly lie on periodic invariant circles and so there is nearly a null direction in the matrices
used in the continuation method. Our numerical method fails when the condition number of the
matrices exceeds 10'2, and for low frequency rotational orbits the onset of this ill-conditioning
occurs much further from the bifurcation value than for higher frequency orbits. This causes a
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premature loss of precision and produces less accurate estimates of the bifurcation values.

The solid curve in the right hand pane of Fig. 7 shows the cumulative precision data for the
subset of orbits with w > 0.025 and either k(w) < % or k(w) > 2. The continutation method
produced at least 7 digits of precision for 70% of of the orbits; none of the obits had fewer than
4 digits of precision once we excluded the orbits with anomalous twist and low frequencies. In
every case that we investigated, the precision can be improved by carefully “hand-tuning” the
parameters of the continuation method (in particular the parameters in the variable step-size

routines). Thus we believe that Fig. 7 gives compelling evidence in favor of Conjecture 1.

3.4 Symmetry

As is well-known [41], the area-preserving Hénon map is reversible; that is, it is conjugate to its
inverse f oS = So f~!, where
S(z,2') = (2/, 7). (16)

Note that the reversor S is orientation reversing, det(DS) = —1, and is an involution, S? = id.
Whenever a map is reversible in this sense, it can be factored into a pair of orientation-reversing
involutions, f = (fS) oS = Ro S. The second reversor for Eq. (1) is

R(z,2') = (z,—2' — k4 2?) . (17)

More generally, any image of a reversor is also a reversor; the full set of involution pairs
{(f’R, ’S),j € Z} form a family of reversors. Thus for example,

T(x,z') = f19(z,a') = Sf(z,2') = (—z — k + 2%, 2') (18)

is also a reversor, and since f 'R = S, we have f = ST. We will sometimes find it convenient
to use this alternative factorization.

An orbit O is symmetric if it is invariant under a reversor, that is if SO = O. It is easy
to see that every symmetric periodic orbit has two points on the fixed sets of S or R [41]; we
denote these, for example, as S = fix(S) = {(z,y) : S(z,y) = (z,y) }:

S={(z,2):x =2},
R ={(z,2') : 22/ = 2* — k} . (19)

The fixed set of T is related to Eq. (19) because f"R = fix(f?"R), which implies that
fFIR=T ={(z,2'): 20 =2 — k} .

The fixed sets intersect at the elliptic and hyperbolic fixed points. Following [25], we divide
the lines at the elliptic fixed point, labeling the four rays with a subscript ¢ for the ingoing half
of the line (leading to the hyperbolic point) and subscript o for the outgoing half (leading away
to infinity). An example is shown in Fig. 8 for k = 2.75, where the hyperbolic fixed point is
off-scale (to the upper right), and the elliptic fixed point is centered. Shown are a number of
class-one invariant circles and periodic orbits that have class-two invariant circles around them.
Each of the class-one periodic orbits is symmetric; for example, the % elliptic orbit has points
on R, and &;, while its hyperbolic partner has points on the other two rays.

It was first noted by Greene that for many reversible examples the class-one, elliptic, rota-
tional periodic orbits tend to lie on one particular symmetry ray, called the dominant ray [29,
§1.2.3]. To our knowledge this has never been proven in general, though it is known to be true
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Figure 8: Phase space of the Hénon map for k = 2.75 with a range (—1.75,0) for  and z’. Shown are a number
of orbits, including invariant circles around the elliptic fixed point, and five class-one island chains with rotation
numbers 2, =, 2 =& 2. Also shown are the four symmetry rays (solid curves) and their images (dashed curves)
and preimages (dash-dot curves).

for maps similar to the standard map for large enough & [42]. For the Hénon map the dominant
ray appears to be R, for large values of k.

However, the identity of the dominant ray depends upon the monotonicity of the twist of
the map. For the Hénon map, there is at least one anomalous domain, % <k < %, where
the rotation number is increasing [31]. For orbits in an anomalous twist region, the elliptic and
hyperbolic orbits reverse roles, and the ray R, contains only hyperbolic orbits. As a result there
is no dominant symmetry line that contains all elliptic orbits when the twist is reversed.

Under the assumption that R, is dominant, we can easily determine which of the other
symmetry rays contain points on the elliptic orbit, depending upon whether the numerator
and/or the denominator of the rotation number are even or odd, see Table 2. The labeling of
these lines is consistent with that in Fig. 8.

The time reversal symmetry operators also have a representation for the shift map, o, Eq. (5).
Indeed the interpretation of S is obvious if we consider its action on a configuration sequence:
S(xi—1, ) = (x4, 2¢—1). Thus as an operator on symbol sequences, S simply reflects them about
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o=t |5
odd/odd | R
even/odd | R,

odd/even | R, | Ri | So

| 5
=

Q

oc,)s

Table 2: The dominant(E4, H) and subdominant(Es, Hs) symmetry rays. Every elliptic (positive residue)

class-one orbit (except when the twist is anomalous) is observed to have a point on E4. Each row corresponds to

rotation number % with p and ¢ even or odd as indicated.

the binary point
S(...8_1.8081 ) = (...8180.8_1 .. )

For symbol sequences, it is convenient to use the operator T = So for the second symmetry
(instead of R), because this corresponds to a reflection about the symbol sg:

T(...S_1.8081 .. ) = (...81.808_1 .. )

Thus the elements of the fixed set of S are sequences symmetric under a reflection about the
binary point, and those of T are sequences symmetric under a reflection about sg. Using the
geometry of the horseshoe (see Appendix C) and its implied ordering relation given in Lemma 20,
we can also find the codes for the symmetry rays. The o rays correspond to codes whose symbols
are “smaller” than that for (—)>°. This means that the parity of sequence sgs; ... s;, where s; is
the first symbol that is not —, must be negative, i.e., there must be an odd block of — symbols
after the binary point. Similarly the 7 rays correspond to codes that are “larger” than (—)°
i.e. that have an even block of —’s (or none). More concretely, define k(s) to be the number of
contiguous — symbols following the binary point:®

)

A(s) = min{j : 5; = +} (20)
j=0
then we have

So ={s:5_4 =s4_1, k(s) odd} ,
S; ={s:s_4 =841, K(s) even} ,
To ={s:s_¢ = s, k(s) odd} ,

T ={s:s_y = s, K(s) even} . (21)

It is easy to see that the rotational codes of §3 are symmetric. For example, from Table 1, the
codes = (...——+++.——+++...) for the hyperbolic % orbit has two points on symmetry lines,
its first image o(s) = (...+++—.—+++...)isapoint on S, and 03(s) = (.. .——+.++——...)

is a point on 7;.

To prove this we start with a lemma about the symmetries of the rigid rotation Eq. (12).
Though the reflection point for the rigid rotation is arbitrary, we choose 6§ = 0, which conforms
to the symmetry of our W partitions, and to our selection of 8 for the canonical elliptic code.

Lemma 3. The rigid rotation F'(§) =60 +w mod 1 can be factored as F' = ST, with reversors
T:0— —0,and S:0—w—0. When w < %, the fized sets of these symmetries divide into the

®k(s) does not exist for (—)°°, as it should not, since this point is the dividing point for the four rays.
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rays

1
So ={0:0=%}, S :{9;0:%},
T, —{0:0=0}, T :{9:9:%}. (22)

Points that start on these rays generate codes with symmetries given by Eq. (21).

Proof. Since the Wi partition is symmetric with respect to 6 = 0, if we set 6y = 0 then the
resulting code is symmetric with respect to the binary point. Since g € W_, and 6; = w € W,
the sequence begins . — + ..., so that x(s) is odd, agreeing with 7,. Similarly, codes generated
by 6y = % are also invariant under 7', and start . + ..., so they are on 7;.

If we set 6y = %, then the symmetry of the wedges (recall Fig. 4) implies s_; = s;_1, so the
code is invariant under S. The first symbol is always sp = —; we will show that x(s) is odd.
Indeed, when w < %, then s1 = +, since 61 = %w <1 —w. Otherwise, 1 —w < 61 < 1, so that
s1 = —. But then s9 = — too, because 0 < 0y < w. Indeed, a double — must occur whenever

w

the orbit enters W_ having skipped W,. Thus the line § = % corresponds to x(s) odd, and is

therefore S,. A similar argument gives the last case. O

Another simple lemma gives relations between the symmetry lines that imply the “dominant-
subdominant” pairing in Table 2.

Lemma 4. The four symmetry rays can be divided into two pairs (Eq, Es) and (Hg, Hs), as
given in Table 2 (depending on the parity of w), such that if 6 is a point on a dominant ray

then FI*7719 is a point on its subdominant partner. Moreover the iterates of lines from different
pairs are disjoint.

Proof. We consider only the case w = odd/even; the others can be done similarly. First we
prove that the stated pair of rays can be mapped into each other. That FEy is mapped into Fj is
the statement F*(7,) = 7; for some t. This requires that tw = % + 4 for some integer j, which is
equivalent to w = % Thus w is of the form odd/even, and t = 4. For the S pair we similarly
have § + tw = HT“’ + j, which again occurs when ¢t = . Since each pair maps to itself, it is
enough to show that 7, does not map to S,, i.e. F/(7,) # S, for all t. This implies tw # %
mod 1. It is clear this equation does not have an integer solution for ¢ for the odd/even case.
Since R is the image of 7, this verifies the pairing in Table 2.

We find that for the odd ¢ case 7 is mapped into S after q;—l iterations. Since we use R in
Table 2, this decreases the number of iterates by 1. O

Finally, we use these results to show that the rotational codes have the symmetries as given
in Table 2.

Theorem 5. The codes for the rotational periodic orbits are symmetric. Moreover the canoni-
cally ordered elliptic code is on the dominant ray 7, (its image is on R,). The other symmetry
lines occur as given in Table 2.

Proof. The canonical code for an elliptic orbit has 6; = wt. Therefore, 6y = 0, and Lemma 3
implies that this point is on 7,. Since f(7,) = R,, the first image of the canonical code is on
Ro. Thus all elliptic orbits have points on the dominant symmetry line. By Lemma 4, they also
must have a point on the subdominant line F.
The canonical code for the hyperbolic % orbit has 8, = wt — 2%1 and the orbit covers the ¢
2j—1

evenly spaced points 57 7 =0,1,...q — 1 on the circle. Whenever p is odd, there exists a
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time ¢’ such that 25 — 1 = p, and then 6, = 2% =¥, Thus 0y € S,. If ¢ is odd, then there exists

2
a t” such that 25 — 1 = ¢ so that 6, = % € 7;. This verifies the line Hy. The subdominant line
then follows from Lemma 4. O

In particular, this implies that the dominant symmetry line conjecture follows from the
rotational codes conjecture.

Corollary 6 (Dominant Symmetry Line). If Conjecture 1 is true, then every elliptic class-
one one parameter family of periodic orbits of the Hénon map starting at the AI limit until
residue zero is encountered has a point on R,.

The caveat in this corollary accounts for the domain of anomalous twist. The elliptic orbits
born in this region in a rotational bifurcation have points on the H symmetry lines in Table 2,
and connect to the normal-twist hyperbolic orbits in saddle-node bifurcations when they touch
the twistless curve. Coming from the Al limit this saddle-node bifurcation is the first encounter
of r = 0, so the backwards running branch between k(w) and kj(w) is removed, because there
the statement is not true.

3.5 Symbol Boundary

According to Theorem 5, the boundaries of the wedges W correspond to the image and preimage
of a dominant symmetry line. Thus we expect that the symbol partition for class-one orbits
will show this same structure. Indeed, this is what we observe, see Fig. 9. The figure shows
that the wedge shaped symbol boundary leaving the elliptic fixed point (small magenta circle)
is delineated by the image and preimage of R,, the dominant ray. This boundary also is valid
for the nonrotational orbits shown.

An enlargement is shown in Fig. 10, where there is a prominent class-two island around
the % rotational orbit. Moving from the elliptic fixed point outward, the figure shows class-one
periodic orbits with frequencies %, %, %, %, é—;’, %, and g.ﬁ Notice that as expected from
the schematic representation above, the — region is a wedge with opening angle 2w centered on
the dominant symmetry line. Indeed as far as we can tell the symbol boundary for all rotational
class-one orbits is indeed formed from the image and preimage of R,.

Also shown in Fig. 10 are three orbits that encircle the % elliptic orbit—orbits of class two.
To the resolution of this figure, it appears that the wedges formed from images of R, also provide
the symbol boundary for these orbits. However, as we will see in the sections below, this is not
the case. We start by constructing the rotational codes for higher class orbits.

4 Class-Two Orbits

As first observed by Birkhoff, a typical elliptic periodic orbit has satellite periodic orbits in its
neigbhorhood, i.e., orbits that rotate around the elliptic orbit. Some of these new orbits will in
turn be elliptic and therefore have satellites about them as well. We use the term class to refer
to this hierarchy of islands-around-islands [25]. For the Hénon map, the elliptic fixed point is
defined to be class-zero, the rotational orbits of §3 are class one, and a class-two orbit is one
that rotates around a class-one elliptic periodic orbit, see Fig. 8 for examples.

51t is convenient to use the Farey tree to choose periodic orbits. For k = 2.43, the rotation number of the
elliptic point is w ~ 0.4123 < % Starting with the pair of neighboring rationals % and 117, we construct the Farey
tree for several levels to obtain our orbits.
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Figure 9: Symbol boundary for k = 2.75 appears to coincide with the image and preimage of the dominant
symmetry line R,. Shown are the same orbits as in Fig. 3. Those points with s = + are colored magenta and
those with so = — are cyan. The solid green line is the dominant symmetry line, R,, the dashed line is its image

and the dot-dashed line its preimage.

Recall that an elliptic/hyperbolic pair of class-one periodic orbits with rotation number
w1 = % is born at the elliptic fixed point when k = k(w1), Eq. (10). After its birth, the elliptic
class-one orbit is the center of a class-two island chain consisting of the invariant circles and
cantori that encircle each point on the class-one orbit. The island extends to the separatrix
formed from stable and unstable manifolds of the class-one hyperbolic orbit, as schematically
shown in Fig. ??7. The class-two orbits have rotation numbers that are measured relative to
f%. When the linearized rotation number of the class-one orbit—as determined by its residue,
Eq. (7) or Eq. (9)—passes through the rational frequency ps2/q2, an elliptic/hyperbolic pair of
class-two orbits is created in a go-tupling bifurcation of f%. We denote the rotation number of
these orbits by w1 : we; they have period Q = gi1¢qo. Three such class-two orbits are shown in

Fig. 10 with rotation numbers % : %,% : % and % : i

For the case of normal twist, the direction of rotation typically reverses with each increment
of class. This occurs because in an any island the rotation number is typically a maximum
at the elliptic orbit forming the island center and monotonically decreases to zero approaching
the separatrix. In particular this implies that the inner separatrix of an island advances with
respect to the center of the island and the outer one retreats, see Fig. ??7. Continuity then
implies that if the class-one invariant circles have clockwise dynamics, the class-two circles have

counterclockwise dynamics.
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Figure 10: Class-one symbol boundary for k ~ 2.43 (¢ = 0.54) coincides with the image and preimage of the
dominant symmetry line R,. Shown are 13 class-one rotational orbits about the elliptic fixed point, as well
2

as three class-two orbits encircling the £ elliptic orbit. Elliptic (positive residue) orbits are shown as dots and

hyperbolic as crosses.

Our numerical observations imply that the code for a class-two % : Z—; orbit is constructed
essentially by repeating the class-one p—i code g9 times, because most of the class-two points are
deeply buried inside the wedges shown in Fig. 4 that determine the class-one symbols. However,
if the class-one sequence were merely repeated go times, the orbit would not have the correct
minimal period; consequently some of the symbols must be flipped to obtain the correct code.
Indeed, there are two islands that intersect the class-one symbol boundary (recall the % island
in Fig. 10).” Such islands are termed ambiguous because they straddle the symbol boundary;

the determination of the symbols of points in these special islands requires more analysis.

4.1 Class-Two Codes

Schematically, a class-one orbit with rotation number w; = 2% can be represented as q; equally

spaced points on a circle with the dynamics Eq. (12). In a similar vein, a class-two orbit with
rotation number % : p—; schematically corresponds to points on a set of circles enclosing each
point of the class one orbit. To compute these points choose a pair of radii, 1, ro to represent

the sizes of the islands and define

2 iy = e (g oyt ) (23)

"Except for the case w1 = %, where there is only one.

1
2
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Figure 11: Schematic class hierarchy: class-one invariant circles (cyan) and a class-two % island chain (red).
Since the rotation number of the class-one circles decreases with radius, the image of the horizontal (green) line
shears as shown. Continuity implies the direction of rotation reverses as the class is incremented. Also sketched

are the elliptic (green) and hyperbolic (brown) symmetry rays for class-one.

Here ro chosen sufficiently smaller than r; so that none of the class-two islands intersect. This
gives an epicycle view of the orbit. The angles (61, 02), representing the island structure, evolve
according to the two rotation numbers of the orbit. The schematic dynamics is expressed by
using a mixed basis for time: ¢ = t; + gite where ¢t; = t mod ¢; so that t; € [0,¢;); this is
written in clock-like notation as®

t= tl . tQ .

With this definition, the angles evolve as
Hz(tz) =wit; +a;, 1=1,2. (24)

Iteration of this pair of maps produces a set of ) = q1¢g» points on the epicycle.

The signs in the exponentials in Eq. (23) are reversed to account for the reversal of rotation
direction that occurs when moving between the classes.

Recall that the canonical elliptic class-one code is obtained by setting a; = 0 and the
hyperbolic code is obtained when oy = —1/2¢;. Since class-two orbits rotate around elliptic
class-one orbits, we set a; = 0; the phase «s differentiates between the elliptic and hyperbolic
class-two orbits. The canonical elliptic class-two code has as = 0, and the canonical hyperbolic
code has ag = —ﬁ.

The epicycles for w = % : % are shown in Fig. 12. The points of the elliptic class-one orbit
are represented by filled circles evenly spaced along the large circle. Surrounding each of the ¢;
points of this orbit is a smaller circle containing ¢o points of the class-two periodic orbit. By
convention, we measure o in a corotating coordinate system, so that points with # = 0 are
located on radial rays from the origin. Notice that a g;-fold iteration maps each small circle to
itself, shifting its points counterclockwise by ws.

8Mixed base systems like the above are well known for time measurements, e.g. setting w = 11—0 : 6—10 : 61—0 :
i : % : % corresponding to tenth of seconds, seconds, minutes, hours, weekdays, weeks, so that in our notation
t=0:1:30:19:4:5is the 4th day in the 5th week, at 19:30 hours plus 1.0 seconds. Instead of i the American

system uses 11—2 : %, where the 2 is represented as AM or PM. Our lives are simpler because all numerators are
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Figure 12: Epicycle view of a class-two orbit for w = . The picture is generated by Eq. (23) with 1 =1

and ro = 0.1. The angle 6; is measured clockwise, and 62 counterclockwise. The elliptic class-one % orbit is
denoted with solid circles, and the class-two orbits are denoted by open circles (elliptic), and crosses (hyperbolic).
Points with symbol — are colored blue and those with + are colored red. The integers next to each elliptic point

denote the time t along the orbit.

To generate the symbol sequence for a class-two orbit, the epicycle picture must be parti-
tioned into regions corresponding to the + and — symbols. Our observations indicate that this
can be done by constructing a pair of “wedges” Wi (w) whose boundaries are piecewise linear.
The boundaries start as rays from the origin at angles §; = +w;—these same rays formed the
class-one boundary. The rays end in the center of the two ambiguous class-two islands corre-
sponding to t; = £1; it is not immediately clear how to continue the symbol boundary in these
islands. A cursory look at Fig. 10 might indicate that the symbol boundary continues straight
through the ambiguous islands. However, our numerical observations show that the two rays
actually bend at the centers of the t; = +1 ambiguous islands by angles 65 = +wo, respectively.
This bending is too small to see in Fig. 10.

The regions W4 (w; : wa) bounded by these rays correspond to the + symbols. Just as for the
class-one case, the region containing 6; = 0 corresponds to s; = —. The only remaining point to
understand is the symbol for points on the boundary. In contrast to class-one, our observations
show that W_ is closed and W, is open.

Definition 2 (Class-Two Code). t = t; : ty determines a point z in the plane by (23) and
(24). If z € Wg(wy : wa) then the tth symbol is s. The region Ws(wy : wa) is bounded by a
continuous piecewise linear system of segments. At the origin two segments of length r1 emerge

1 for an actual clock, hence 60; is not needed; they would have been even more so if the French revolution had
succeeded in promulgating a decimal time system.
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at angles corresponding to t1 = +1. Their endpoints are connected to segments of length ro with
angles corresponding to ty : to = £1 : £1, see, e.g. Fig. 12. The region W_(w; : we) is the one
that contains t = 0: 0 and is closed, while W (w1 : we) is its complement.

It is not difficult to translate the epicycle picture into a simple algorithm that generates the
codes for any w = 2 : %’

Continuing the example of Fig. 12, the orbits are coded so that the points in the red region
have symbol 4+ and those in the blue region have symbol —. The four points that fall on the
symbol boundary (for example t = 8 = 1: 1 and t = 62 = 6 : 1 for the elliptic orbit) have
the symbol —. Note that points in the non-ambiguous islands, corresponding to t;1 = 0,2,3,4,5
have the same code as the elliptic class-one % orbit. Thus many of the symbols of the class-two
orbit simply repeat the class-one code.

To see this more clearly, denote the class one code by the row vector s;. Since most of
the points on the class-two orbit are determined by this code, we first replicate this code g,
times; however, instead of viewing this as a vector of length ¢1¢go we reshape the code as a table
with s; as its rows. The columns of this table are labeled by t1, and the rows by ¢3. In this
way each ambiguous island corresponds to a column of the table, i.e. the columns ¢; = 1 and
t1 = —1 = q1 — 1. The codes in the ambiguous columns must now be replaced by the appropriate
code for ws using the class-two wedges.

As an example consider again the symbol sequence the % : % orbit. The Table 3 lists the
symbol sequence where the 63 symbols are arranged in 9 rows of 7 entries each. The ambiguous
islands correspond to the columns ¢; = 1 and ¢t; = 6 = —1 mod 7. The ¢2(q1 — 2) symbols
in the remaining columns are determined by go-fold repetition of the elliptic class-one code for
w1 =2/7, (—++——++)>.

2 2.2
t7 001 2 3 4 5 6|t 9 L T°9
St | Sty S—1:ty
-+ 4+ - - 4+ 4]0
- + +
- -]+ - - + +|1
+] - 4+
- - 4+ - — 4+ 42
+] - 4+
-+ 4+ - — + -3
+| + -
-+ 4+ - - + 4|4
- + +
-+ 4+ — — 4+ 415
- + +
- — 4+ — — + +16
+] - 4+
-+ + - - + -7
+| + -
-+ 4+ - — + -8
+ —

Table 3: Elliptic class-two code for the % : % orbit. The ambiguous columns are t; = 1 and
ty = —1. The hyperbolic code is the same with the exception of the boxed symbols, at t =8 =
1:1and t=>50=1:7, which are flipped. The right table compares the code for the elliptic %

class-one orbit with the two ambiguous columns in the % : % orbit .

The symbols in the ambiguous columns ¢; = 41 are generated with respect to a wedge
formed by the boundary in the class-two island. The codes for the hyperbolic orbit are obtained
by a shift of ay = —ﬁ, (i.e. a clockwise rotation) as shown in Fig. 12, this corresponds to
flipping the two boxed symbols in Table 3. As we will see below, when there are two ambiguous
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islands, exactly two symbols flip relative to the elliptic case.

Epicyclic pictures for additional class-two orbits are shown in Fig. 13. The codes are easily
obtained from the figures by reading off the symbols according to the time ¢, using the colors
shown. For example, the code for the elliptic % : % orbit is the 7 fold repetition of the % elliptic
code, —+8, modifying only two symbols in the columns ¢; = +1, by setting s19 = sg2 = —. The
hyperbolic code is obtained from the elliptic one by flipping s1g9 to +, and s55 to —.

As wi approaches %, the class-one + wedge shrinks to a single point 6; = % Orbits with
w) = % are special because the two boundaries of the class-one wedge coincide so that there is
only one ambiguous island with ¢t; = +1 = —1. Thus for example, the code for the % : % elliptic
orbit shown in the last panel of Fig. 13 is (— + —!4)*°, while its hyperbolic partner has code
(— 4+ —134). In this case the ambiguous column of the elliptic orbit contains +—7 while the
unambiguous column simply contains —&.

If wy approaches %, as in the first two panels of Fig. 13, the open class-two wedges grow
encompassing all but 0y = % The extreme case of this, ws = % has only one s = — point in the
ambiguous islands; for example, the code for the elliptic é : % orbit is (— +7 — — 45—)%,

The well-known “doubling” substitution rule

—— —+ and + — —— (25)

(see Appendix B) can be used to generate the codes for class-two orbits of the form % : w from
those of the class-one orbit with frequency w. For example, applying this substitution rule to
the % code, —+7, gives the same code as in Fig. 13. That this is true in general follows because
the class-two wedge for s = + is 6 € (—w,w), which is the same as the class-one wedge for
s = —. Hence each symbol flips to create the ambiguous column; the first, unambiguous column

is all —.

4.2 Numerical Observations

In this section we present numerical observations that support the class-two code construction
for the area-preserving Hénon map. As for the class-one case in §3.3, we checked that the
class-two orbits defined by their codes at the AI limit collide with the appropriate class-one
orbit at the parameter value where the class-one orbit has the expected residue. We restricted
our attention to class-two orbits with ¢; and g2 < 13. Fig. 14 shows the number of digits of
precision in the bifurcation value for the class-two rotational orbits with normal twist.” When
w1 = 1/2 there is only a single ambiguous class-two island. In order to verify the class-two code
for this case we compared the numerical bifurcation parameters for 236 class-two orbits of the
1.

form 5 : wo where g2 < 39 to the exact value [40]

1
k(i cwy) = 3+ sin(mwsy)?.
Outside of the interval below wa = 1/3 where the twist vanishes at class-two the computed values
of the bifurcation parameter were accurate (to at least 8 significant digits) when compared to
the exact value.
The results we have obtained give us confidence to formulate the following

Conjecture 2. The Al code for the class-two orbits of the Hénon map is defined by the wedges
Wi(wr @ wg) given in §4.1.

1.4 1.4 1.4
37134 " 135 " 13

: %. These are probably related to anomalous twist either near 3 or near i.

E

)

.4
T 1301

NN

.4
T 13

ut|o

9There are only eight orbits with fewer than four digits of precision:
3 5.4 6
13713 * 13713
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Figure 13: Four examples of schematic class-two orbits. Points are labeled by the time ¢ along the orbit.

Symbols in the blue regions are — and in the red regions are +.
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Figure 14: Number of correct digits in parameter value for 727 class-two orbits with ¢; < 13 and ¢» < 13. We
excluded frequencies p2/q2 = 1/3,3/10 where the class-one twist is anomalous to avoid numerical difficulties with

multiple bifurcations.

4.3 Parity of Class-Two Codes

We now show that the elliptic and hyperbolic class-two codes differ by two symbols, but they
have the same parity.

Lemma 7 (Properties of class-2 codes). Assume w # % : % Then the elliptic and hyperbolic

class-2 codes differ by flipping two symbols, the symbol att =1:1 and that at

t:—lz%2 q2 even
27+1 1
po. 2D+ 4 odd

2p2

where j is the smallest non-negative integer for which an integer solution for ts is obtained. The
parity of both orbits is equal to the parity of qo.

Proof. We start by considering the ambiguous island, ¢t; = +1. By definition, the hyperbolic
and elliptic codes differ only when wste and wate — ﬁ are in different wedges. Let S; be the
sectors defined in Eq. (15) relative to go for 2. When g2 is even the situation is similar to
class-one, because the the wedge boundaries in the ambiguous island coincide with boundaries
of some sectors S;. Accordingly only the symbol ¢ = 1 : 1 changes. Alternatively when g2 is
odd, the other wedge boundary at % is not part of the elliptic orbit since woty # % for all t¢,.
Instead the hyperbolic orbit hits this boundary when wots — ﬁ = % + j, flipping the symbol at
this location. This gives the above formula. In order to show that this is the only other change
with ¢t = 1 : to the argument of Lemma 1 can be repeated with sectors 5’]- of half the size. As a
result for all oy € 5’_1 the elliptic code is obtained, while for ag € 5_2 the hyperbolic code is
obtained.

Now we consider the ambiguous island with ¢ = —1 : t5. The wedge in this island is a
reflection of that in the previous ambiguous island. However, since the rotation direction is not
reversed, the sectors S; (or 5']) are not reflected. This implies that whenever an open sector end
coincides with a closed wedge end for t = +1 : 9, after reflection of the wedge for ¢t = —1 : ¢

both endpoints will be open, and vice versa. Since a symbol flip only occurs when different types
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of endpoints coincide only one of the symbols at to = +1 flips, never both. In particular when
g2 is odd both symbol flips occur for to = +1, while for even g the symbol half way around the
orbit with waty = % + j flips for to = —1. This gives the first part of the lemma.

When g9 is even the parity of the unambiguous symbols (f; # +1) is even, because their
number per island is multiplied by go. The parity of the ambiguous symbols is even in the elliptic
case, because the symbol sequences are cyclic permutations of each other: Starting with ag =0
at t1 = 1: 1 gives the same symbol sequence as starting with as = % —wyatt=—1:% (apply
a rotation!). But as is a point on the orbit for even g2, hence the elliptic ambiguous columns
have the same numbers of signs. Therefore their parity is even, and the whole sequence has even
parity when g9 is even.

When ¢ is odd the parity of the unambiguous symbols is odd, because the number per island
is odd and they are repeated an odd number of times. The number per island is odd because
the elliptic class-one orbits have odd parity, and the two deleted symbols in the ambiguous
column are + signs in the elliptic case. The number of signs in the ambiguous columns is the
same because the two are time reversals of each other: upon reflection of the wedge and the
orientation the same sequences are generated. So their parity is even, and the total parity is
odd. O

Recall from Lemma 2 that the elliptic/hyperbolic class-one orbits have opposite parities and
this corresponds to their opposite residue signs. One important consequence of the previous
lemma is that at class two the elliptic/hyperbolic partners have the same parity and therefore,
according to Eq. (8), will have residues with the same sign at the AI limit. Nevertheless they
are initially born with opposite residues, as this is the normal form of the go-tupling bifurcation
[34]. According to Eq. (8) even parity implies a negative residue at the AI limit. Therefore,
when g9 is even the residue of the (initially) elliptic orbit, which is (initially) positive, must cross
r = 0 at least once as k increases from the bifurcation value in the approach to the Al limit.
Similarly, when ¢y is odd the residue of the (initially) hyperbolic orbit must cross r» = 0 for some
k larger than the bifurcation value.

We call bifurcations related to these additional zeros in the residue function secondary bi-
furcations. In particular when r = 0 for k larger than the parameter value of the rotational
bifurcation, a secondary pitchfork bifurcation occurs (super- or subcritical, depending on the
parity of the code), and when r = 1 a secondary period-doubling bifurcation occurs (again super-
or subcritical, depending on the parity). Between these two parameter values, a complete se-
quence of secondary rotational bifurcations must take place. An example of these bifurcations
is shown in Fig. 15.

We will not attempt to completely describe the symbol sequences associated with these
secondary bifurcations, but only offer an empirical rule based on our numerical observations:

Conjecture 3 (Pitchfork class-two). The pitchfork children of class-two orbits only differ in
the four symbols at the intersection of the ambiguous columns and rows with t1 and ts given in
Lemma 7. When qa is even these four symbols ordered by t are —+ —— for the (initially) elliptic
orbit and + + —+ for the (initially) hyperbolic orbit. The secondary bifurcation of the elliptic
orbit is
—+ ——=pf(—+—+,—++-).

When qo is odd they are — 4+ +— for the elliptic and + + —— for the hyperbolic orbit. The
secondary bifurcation of the hyperbolic orbit is

+4+ = —=pf(+++—++—-1).
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Figure 15: Scaled residue p, Eq. (11), for typical class-two rotational orbits and their pitchfork children with
g2 odd (left panel) and even (right panel). The (initially) stable class-two orbit is rendered in blue, the (initially)
unstable orbit in red, and one of pitchfork children in green. The dashed curve is the period-doubling curve r = 1.
The secondary pitchfork bifurcation occurs at the rightmost zero crossing on the (initially) stable orbit when g2

is even and the initially unstable orbits when g2 is odd.

It is not hard to show that the four ambiguous symbols in the parent sequence must be
F + —— as given in Conjecture 3; these are the symbols corresponding to the points on the
appropriate class-two wedge boundaries.

The rule given in Conjecture 3 generates the symbol sequences of the daughter orbits created
in a secondary pitchfork bifurcation. These are the orbits whose residues are rendered in green
in Fig. 15. We examined 105 class-two orbits in the Hénon map with frequencies of the form
% : g where j = 3,4,5 and 3 < ¢ < 15. The parameter value (k) where the pitchfork children
predicted by Conjecture 3 were born agreed (to at least eight significant figures!®) with the value
where the residue of the class-two parent orbit crossed zero in the “secondary” bifurcation. These

results suggest that the conjecture is probably valid for the Hénon map.

4.4 Symmetries

Numerical observations suggest that the concept of “dominant” symmetry line can be extended
to class-2 orbits (and in fact to class-¢c with ¢ > 2, see below); for example, for each wy, there
appears to be a particular symmetry ray that contains all of the elliptic class-two orbits wy : wo
[25]. Recall from Table 2 that there are two rays, E4 and F, whose identity depends upon the
parity of the numerator and denominator in w1, that contain elliptic class-one orbits. Since each
class-two orbit rotates around the points on a class-one orbit, they should have points on the
two E rays. These two rays are divided at the class-one elliptic points, giving four new rays.
As before, we use 7 and o to denote “inward” and “outward” halves of the rays; the subscript
1 corresponds to the ray that starts at the elliptic class-c orbit and heads in toward the elliptic
class-(c—1) orbit, while o is the ray that heads out from the lower class orbit. Thus, for example,

E, is divided into Ey, and E;. We denote the four symmetry rays at class-c by E(C), Egc), Hc(lc),
and H'”. The observation in [25] is that

() _ r(c=1) .
EY) = ECY, (26)
10With the exception of a six orbits:% : %, i : 14—17 i : %, i %,i %, % : 14—3 for which numerical difficulties

gave less than six digits of precision.
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that is, the outward half of the class-(c — 1) subdominant ray becomes the dominant ray for
class-c, see Fig. 16. This is consistent with Fig. 10, as all of the elliptic, class-two % : fl’—; orbits

have a point on the outward half of Es(l) =38,.

Figure 16: Sketch of the dominant symmetry line at class-two. Shown are points on a period 5 elliptic class-one
orbit (cyan dots), and several class-two orbits (red on the symmetric islands) All of the elliptic class-two orbits

line up on the outward half of the subdominant class-one ray Eg) .

In this section we verify the dominant symmetry conjecture for the class-two codes. We also
obtain a recipe to describe the boundary of the class-two wedge in terms of iterates of the E((f),
so that the wedge can be computed in the Hénon map and compared to the prediction obtained
from numerical continuation.

That the class-two elliptic codes are symmetric is a simple consequence of the symmetry of
the wedges W in the two epicycle picture.

Lemma 8 (Symmetries of class-two codes). Lets be the code for the elliptic class-two orbit
_pL.p
e
Egl). In addition, when qo is odd, s has an image on the subdominant line Eég) = Ec(ll) = Ro,
iy

and when qo is even on Es(l). Here Eg(ls

with rotation number w . Then s has an tmage on the dominant symmetry line Ec(f) =

are the lines in Table 2.

Proof. Let s denote the canonical elliptic symbol sequence, i.e. starting from the point § = (0, 0).
Then if £, = 1:1 =1+ ¢, the point o'+s is on the symbol boundary since it corresponds to

0 = (w1, wsq). Similarly setting t- = —1:-1= (¢ —1): (g2 — 1) = q1g2 — 1 = —1, then o'-s
is also on the symbol boundary, and corresponds to § = (—wy, —w2). Since the class-two wedge
W_ is closed, these two points have the same first symbols s9 = —, and by symmetry of the

wedges in 6§ — —6, the two sequences must be the same when reversed; consequently,
Tol*s =o'-s.

Repeatedly composing this with o, and noting that 7 = To~!, we find that when ¢, 4+ t_ is

even, o% € T where a = % = 4. Alternatively when ¢, 4 ¢_ is odd, since 07" = S we find

UbSESWhereb:%:L;l_
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To decide which half of the symmetry line these points are on, recall from Eq. (20) that this is
determined by x(s), the number of consecutive — symbols starting at so. Consider first ¢ even,
where the symmetric point is 0%s. Since t = a = 2 : 0, then § = (31,0) = (&,0) = (3,0)
because p; is necessarily odd. Thus the first symbol of this sequence is sy = +, and so by
Eq. (22) it is on 7;. When ¢; is odd, the symmetric point is o’s, with t = % : 0, and so
6 = (B + %,0). When p; is even, this is on the line §; = %, with s = —; following the
argument in Lemma 3 this implies the point belongs to S,. Similarly when p; is odd, the point
isin ;.

Summarizing we obtain the table:

w1 ‘ ty:to 01 0o
odd/odd | 230 144
even/odd | L0 «

2
odd/even | 40 3

Since this symmetry is independent of wo, we are justified in calling it a “dominant” symmetry
line.
The subdominant symmetry line can by found by noting that since s has period Q = ¢1¢2,
we also have
Tolts = ot-1%

Iterating this relation we find that if ¢1(g2 + 1) is even, then o°s € 7 when ¢ =

%. Otherwise, 0% € S where d = ‘”(L;UH.

The choice of ray for the subdominant symmetry depends upon the parity of both w; and
wz. When g2 is odd, then the second line is at ¢°s. Indeed t = ¢ = 0 : %, and so 01 = 0
independently of wy, and Ay = %2 + “2. For any ps we have 0°s = . — 4+ ..., so that this point
is on 7.

We now consider ¢ even. If g; is also even then the symmetry still occurs at t = ¢ = % : %2,
which gives 6 = (&, 5%) = (%,%) since both p’s are odd. If w; < %, then s, = +, and the
symmetry is 7;. A similar argument gives the same result for the frequency % case. The final

t+t_+Q
=

case has g1 odd and ¢o even, for which the symmetry corresponds to t = d = % : %2, so that

0= (B + %, 52). When p; is even, 6; = %, so so = —. This point is on S,, as follows from an

argument similar to that in Lemma 3. Finally if p; is even x(s) is even, so the symmetry is S;.
Summarizing, we obtain a table for the subdominant line:

w1 w9 t1:t 01 02 E§2)

any even/odd 0: % 0 =3 7

any odd/odd | 0:ZH2 0 1y T
odd/odd odd/even | 412 i+ i S
even/odd odd/even <1127+1 L oL i S,
odd/even odd/even | 4% 3 3 T

O
So far we have shown that the class-two codes are consistent with Eq. (26), but we have not
yet shown how to divide E() into halves.

Theorem 9 (Class 2 Dominant Symmetry Ray). The dominant symmetry ray for class-
@ _ )

two codes is the outward half of the subdominant ray at class-one, E;” = Es’, thus verifying
Eq. (26) for class-two.
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Proof. The division of the symmetry lines for the shift o into rays at the class-one orbit uses
the ordering relation discussed in Appendix C. As shown in Fig. 23, the outer halves of S, and
7, correspond to codes that are “less” than (under this special ordering) those of the class-one
orbit, while the outer halves of S; and 7; correspond to codes that are “greater” than those of
the class-one orbit. The canonical elliptic class-two code is the same as that of the class-one
orbit up to time ¢t = 1:1 =1+ ¢, where it first hits the class-two wedge boundary. Moreover,

according to Lemma 8 and Lemma 4, if s is the canonical elliptic code, then its L‘h; 1Jth iterate

is on Egl)

Thus the relative ordering of the class-one and class-two codes, following Lemma 20, depends
upon the parity of the symbols of the class-one orbit starting halfway around the orbit, and going
up to the first differing symbol s4, 41 = s1, i.e. on the sign of

p= 7r(qul2+1J .. 8q1—15051) »

In particular, we must show that p = (—1)P!. This follows because if p; is even, Egl) =S8,, and
so the code for the class-one orbit should be greater than that of the class-two orbit, while if p;
is odd, then the symmetry lines are either S; and R;, so the class-one code should be less than
that for class-two.

As noted in Lemma 2, the class-one elliptic code has 2p; — 1 symbols that are —. Moreover,
the canonical elliptic code has symmetry 7', which means it is unchanged under reflection about
sop = —. This implies that the first half of the orbit syso... §|a-1) is the same as the second

2
half Slaitl) - Sqi—1 written backward. Consequently they each have p; — 1 symbols that are
2

]

—. Finally, the sequence S| a1t |- - Sq1—15051 has one additional minus sign, making p; in total;
2

]
therefore, p = (—1)PL. O

4.5 Symbol Boundary

In order to connect the above findings to the Hénon map we now describe the wedge boundaries
in terms of iterates of symmetry lines. Inside the class-one island the wedge boundary is simply
given by the forward and backward iterate of the dominant symmetry ray R,, as discussed in
§3.5. From the schematic picture it would seem as if the higher class wedges are also constructed
from iterates of R,. This would, however, contradict the observation that the dominant symme-
try line is different at the next class [25]. Moreover, we expect that a symbol boundary should
be associated with a line containing all the elliptic points. Thus, as we saw in Lemma 8 it should
be associated with the subdominant elliptic line.

Therefore we now show that appropriate iterates of R, in the schematic picture can in fact
be identified with certain iterates of the subdominant lines as given by Eq. (26).

Lemma 10 (Boundary Symmetry Lines). The boundaries of the class-two wedge in the
ambiguous islands t; = £1 for the class-two orbit w = p1/q1 : p2/q2 are given by

e the L‘h;lj + t1 iterate of the subdominant symmetry ray Egl) and

e the —[ql—;l] iterate of symmetry ray Ea(l})).

Proof. Recall the proof of Lemma 4. The schematic boundary of the class-two wedge has two
parts. The inner part consists of the class-one rays F*'(R,) with ¢; = +1. The first part of the
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lemma is the statement that this ray is an image of Eél) = S,. For example, when w; = e/o,
then we require that there exists an integer n such that

even
odd

w1 = FY(R) =F"(S,) = wilti+1)+j=22+wn

2

for some integer j. Solving for w; gives 2j/(2n — 2t; — 1), which is of the form even/odd. When
t1 = 1 the explicit solution is n = (¢; + 3)/2, and when ¢; = —1 it is n = (¢; — 1)/2. Note that
replacing S, by S; or R; leads to a contradiction. Hence S, is the unique symmetry ray that
can be mapped to R, for w; = even/odd. In a similar way the other cases lead to

dd . 1+
wlzo— : F'(R,)=F"S) = witi+1)+j= 1 +win
odd 2
which gives the same values of n as before. Finally,
odd 1
= AL = F"(R; +j== 1
wp = (Ro) (Ri) = wilti+l)+j=g+wi(n+1)

which gives n = 4 + ¢;. Combining theses expressions gives the first form.

The second ray of the class-two wedge is formed by taking the o part of the ray just con-
structed (i.e. the part that goes beyond radius r1), and turning it by +ws for ¢ = £1, respectively.
Turning by +ws is achieved by iterating one complete cycle of class-one, i.e. iterating £q; times.
For t; = —1 the number of iterates is thus (¢; — 1)/2 — ¢; for odd ¢; and ¢;/2 — 1 — ¢; for even
¢1. Combining both cases gives —[(¢1 + 1)/2], and the result follows. O

As a result of the previous Lemma the number of iterates needed to construct the class-two
wedge only depends on ¢, the period of the class-one orbit.

It seems pointless to construct the class-two wedge from iterates of the new dominant sym-
metry line instead of from iterates of R,, since the two agree in the schematic picture. It turns
out, however, that the former gives the correct wedges for the Hénon map. In the schematic
pictures the two constructions coincide because the map has no twist. At the birth of the class-
two island (when the rotation number of the class-one orbit is we, and the rotation number of
the class-two orbit is 0) the schematic picture is an accurate description of the wedge-geometry.
Away from this bifurcation the symbol boundary differs from that in the schematic picture, and
the wedge needs to be constructed from the dominant lines of class 2.

In Fig. 17, we show the symbol boundary for & = 2.684, where the % island is predominant
(the same phase space is shown in Fig. 18). Here the class-one orbits are shown with colors cyan
and magenta for s = &+, respectively. The boundary between these colors is given by the image
and preimage of R, as before. Class-two orbits with w = % : ’;—; are shown with colors blue
and red for s = +. Note that the class-one partition boundary does not work for these orbits.
According to Lemma 4 the boundaries in the t; = —1 ambiguous island are given by segments
of f2(S,) and f=3(S,); these are shown as the dashed (brown) curves, and clearly delineate the
symbol boundary in Fig. 17 for the class-two orbits. Similarly segments of f4(S,) and f~1(S,)
form the class-two boundary in the 7 = 1 ambiguous island.

There is apparently a jump in the symbol boundary across the separatrix of the % orbit. We
are unable to resolve the behavior near the separatrix numerically as the period of the orbits
near the separatrix becomes too large to accurately find the bifurcation values numerically.

The ability to describe the wedge boundary that is obtained by continuation from the AI
limit in terms of iterates of the symmetry lead to Conjecture 2.
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Figure 17: Class-one (cyan and magenta) and class-two (blue and red) rotational orbits for k = 2.684. The
— symbols correspond to the cyan and blue points, and the 4+ to magenta and red. Also shown are the ¢t = +1
iterates of the symmetry line R, (green) that form the class-one boundary, and the iterates t = —1,4 and t = —3, 2

of S, (brown) that form the class-two boundary.

5 Class-c Codes

Orbits of arbitrarily high classes can also be found in area-preserving maps. For example, Fig. 18
shows successive enlargements of the phase space of the Hénon map and exhibits orbits up to
class four. The enlargements in this figure are not done with the same multiplier; indeed, though
there are special parameter values for which the class hierarchy exhibits self-similarity [25], in
general it does not. While there are typically islands of every class, their shape and structure
changes with class.

A class-c orbit rotates around a class-(c¢—1) elliptic periodic orbit with some definite rotation
number. We denote the rotation number by a string

W=w1:iwg:...:We. (27)

Each of the numbers w; = % is necessarily rational, except possibly w.. If the class-c orbit is

periodic, it has period @ = [[;_; ¢i- The rotation number w41 about a class-¢ periodic orbit
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Figure 18: Phase space of the Hénon map for k = 2.684. Enlargements show higher class orbits, ultimately

focusing on the % : 1—33 : Tls : % orbit. The class-one invariant circles (cyan) encircle the elliptic fixed point, class-

two (red) the £ elliptic orbit (red). Shown in the enlargements are class-three circles (green), class-four (orange),
and finally a class-five chain (mauve). The elliptic class-two % : % orbit has a point on the subdominant elliptic

line S, for the elliptic % orbit, as implied by dominant symmetry line conjecture.

is obtained by iterating fQ and considering rotations about one point on the class-c orbit—if
an orbit returns to itself after g.4; iterations of f@ and has undergone p..1 full rotations, then
Weyl = DPc+1

Generalizing the epicycle picture in Fig. 12, we can construct the symbol sequences for

periodic orbits of arbitrary class. As before, time is written in the mixed ¢; basis:
tzt1+q1(t2—|—q2(t3—|—...—l—qc_ltc)) =t :ta:... 1 tc; (28)

where the digits ¢; are taken modulo ¢;. Associated with each ¢ there is a point 0(¢) € T¢ defined
by the mapping
t— Q(t) = (wltl, watg, ... ,wWele + Oéc) . (29)

Here we have set a; = 0 for j = 1,2,...c — 1; this represents the selection of elliptic orbits up
through class-(c—1). The phase a. selects an elliptic or hyperbolic class-c orbit. A class-j island
consists of the set of points §(t) with a fixed choice of ¢; : t3 : ... : ¢j_;. Incrementing t; moves
the orbit around the island with frequency w;, while incrementing 6; by q%- moves sequentially
through the points in the island.

The epicycle picture is obtained by generalizing Eq. (23). Define a set of radii, r;, i = 1,.. . ¢,
that decrease rapidly enough so that the set of circles defined by

z + iy = e 20 (7’1 + 2mif (7’2 +... rce(_l)CQ”wC)) , (30)
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do not overlap. As before, the direction of rotation reverses with each class. An example epicycle
picture for class three is shown in Fig. 19.

Figure 19: Epicycle picture for the class-three orbit % : % : % The boundary of W_ (blue) is closed on the solid

rays and open on the dashed rays.

The definition of the class-c code is complete once we specify the boundary between the
“wedges” W4 that define the symbols s; = +. As for class-two, our numerical observations
indicate that the boundary consists of another wedge. The rays that bound the wedge leave the
origin with angles #; = +w;. These extend to the center of the two class-two ambiguous islands
at t; = +1. The rays turn by angles 6o = f+ws, and continue to the center of two class-three
ambiguous islands at ¢t =1 : 1 and t = —1 : —1, respectively. The rays again turn by angles
03 = +ws, continuing to the center of class-four ambiguous islands, etc. Note that since the
direction of rotation in Eq. (30) reverses, the rays turn in an alternating manner.

The specification of the symbol boundary is complete once we define the codes for points
that fall on the boundary. This is especially important for ¢ > 2, as there can be more than
two ambiguous islands. For example in Fig. 19, since ¢go = 4 is even, there are four ambiguous
class-two islands, correspondingtot=4=1:1,7=1:2,8=—-1:—-2and 11 = —1: —1—and
the rays defining the boundary of W_ intersect all of these islands. By contrast, when ¢o is odd,
there are only two ambiguous class-two islands, t =1:1 and —1: —1.

The openness/closedness state of the boundary of the region W_ is most easily described
recursively. Recall that at class one, the boundary of W_ is open. Given the boundary at class
(¢ — 1), the boundary at class ¢ is obtained by reversing the state of the ray at class ¢ — 1 and
appending class-c rays with the same state. Thus for class-two, the previously open class-one
ray becomes closed, and the new class-two ray is also closed. For class three, as shown in Fig. 19,
the class-two ray and the new class-three ray are now open. Applying this rule to the first few
classes generates Table 4.

We have checked that this rule works for a number of class-three orbits, and a few orbits
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class | 79 r3 T4 5

T = W N
|
|
1
1
|
|

Table 4: The class-c boundary of W_ is open (dashed) or closed (solid) along the rays, r,
defining the ambiguous islands.

of class four. However, the high periods and multiplicity of secondary bifurcations involved

prohibit systematic studies of high class orbits. In particular for the class-two orbit % : %, this

rule generates the correct codes for the elliptic and hyperbolic orbits with w3 = %, %, i, %,

and % We have also checked the case % : % : % and a number of cases with odd ¢z including
% : % : i. The correct code is also obtained for % : i : % : % The class-c codes also work for

the period doubling case where it is equivalent to the doubling substitution rule, recall Eq. (25).
For example, the codes for the period-doubling sequence through class four are

T
1.1.1 (—+———4+—H) (31)
3333 (—+———+—-F—-+-———+-—)®

A simple rule that also generates this sequence is to double the previous entry and flip the last
symbol [40].

Though we have not systematically explored beyond class-two, these few studies give us
confidence that the class-c rule works in general.

6 Conclusion

We have shown how to systematically generate symbolic codes for rotational orbits and “islands-
around-islands” orbits for the area-preserving quadratic map. The construction of the codes in
terms of wedges with opening angles determined by the frequencies w. of the orbits explains
numerical observations of the wedge-shaped symbol boundaries for elliptic islands. The wedge
boundaries are constructed from segments of the symmetry lines of the mapping.

It is for precisely this case—when there are elliptic orbits—that more traditional, symbolic
partitions fail. It is interesting to note that Christiansen and Politi constructed symbol bound-
aries in islands of the standard map that have precisely the same structure as ours for class-one
rotational orbits [21]. However, for this case the identification of symmetry lines is complicated
by the fact that the standard map has two distinct sets of reversors.

Open questions that we hope will be investigated in the future include:

e How does the symbol boundary evolve from the line z = 0 when there is a horseshoe, to
the complex set of epicycle-generated wedges when there are elliptic islands? Note that
when an orbit first becomes stable, it typically does so by an inverse period-doubling, so
its wedge opening angle will be zero.
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Does the epicycle picture for rotational codes also apply to other reversible, area-preserving
maps with anti-integrable limits? Examples include the standard mapping, and polynomial
automorphisms.

How do the wedge boundaries connect across the island separatrices? As was first observed

n [21], the symmetry lines seem to naturally connect with the symbol boundary in the
chaotic region of phase space that corresponds to primary tangencies. They remark: “We
have no explanation for this nice phenomenon.” Neither do we.

What are the codes for rotational orbits generated by bifurcations of the elliptic orbits
created in secondary pitchfork and twistless bifurcations?

How are the symbol boundaries organized in maps that are not reversible? Perhaps the
simplest example corresponds to some quartic polynomial automorphisms [43]?
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A Codes for Twist Maps

Our purpose in this appendix is to relate the rotational codes described in this paper to those used
in other papers. There are three commonly used codes for rotational orbits of twist maps, the
linear, velocity and acceleration codes, which we denote a, b, and ¢ respectively [24, 44, 45, 46].
Aubry-Mather theory implies that recurrent minimizing orbits for twist maps have a particu-
larly simple symbolic coding. Orbits that are nondegenerate minima of the action are hyperbolic.
Thus the codes we discuss here will correspond to the hyperbolic codes in §3.
An area-preserving map on the cylinder f: S' x R

(ZL‘,, y/) = f(xv y) (32)

is a monotone twist map if %—Z > 0. Note that this hypothesis does not apply to the Hénon

map, even locally about (—)°°, because it has a twistless bifurcation at k = 1% leading to a twist
reversal [31]. Nevertheless, we will see that the c-codes for minimizing orbits of twist maps do
correspond to those of the rotational Hénon map with the proper translation.

A.1 Linear Code

One way of coding rotational orbits of maps with an angle variable is to count the number of
complete rotations they make. To do this, we lift the angle variable to the line, and define the
linear code,

ar = [x¢] .

Thus a; is the number of complete rotations at time ¢.'!

The linear code of a minimizing orbit of a twist map is determined by its rotation number.

Theorem 11 (Aubry [37]). Suppose F : R? — R? is a lift of the twist map Eq. (32), and
{z¢,t € Z} is the configuration of a recurrent, minimizing orbit. Then there exists a rotation
number w and phase « such that the linear code of x; is the same as that for the rigid rotation
on the circle 0; = wt 4 0q, i.e.,

a; = [wt + o] (33)

Here we take Eq. (33) as the definition of the linear code for a rotational orbit and consider
some simple structures that arise.

A.2 Velocity Code

An alternative coding for rotational orbits is the “velocity” code, defined to be the first difference
of the a-code:
bt = ary1 — ay (34)

Note that knowledge of b gives a up to an initial condition, ag, which corresponds to the choice
of interval for the lifted angle z.

While, the b-code is well defined for any w, if we restrict to 0 < w < 1 then we can compute
it by dividing the circumference-one circle into two sectors

B (w) = (—w, 0],

By(w) = (0,1 —w] . (35)

1The choice of the ceiling function here is arbitrary, as are the choices of forward and backward finite differences
in the next two sections. Ultimately, these only affect the canonical ordering for the codes, but the ordering is
important for concatenation rules.
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Then we have
by =1 if {wt+a}e B;i(w), (36)

as shown in Fig. 20.

When w is irrational, the code changes as « varies. We define the “canonical” ordering as

that obtained by setting o = 0. For example the canonical b-code for y=2 is

b = (...0100.10100101001001010010100100101001001010010....) .

The fact that there are uncountably many hyperbolic codes is consistent with the fact that there
are uncountably many orbits on a particular invariant circle or cantorus. Note that the velocity

code always consists of blocks of the form (10™) and (10™~!) where m = |w™!]. As we will see
1

below, it is no accident that these building blocks are the codes for the Farey parents = and

% of each frequency in the interval that they bound.

85

66

0, = w+a

Figure 20: Construction of the velocity code for w = =2 showing the sectors By and B; (shaded). The orbit
shown has @ = —0.1 and its b-code is (...0100.1010010010...).

When w = p/q is rational the velocity code is independent of choice of initial phase.

Lemma 12. The b-code for a rational rotation number w = p/q is independent of the choice of
phase o up to cyclic permutations.

Proof. The S; defined in Eq. (15) partition the circle into ¢ sectors of width %. Note that

By = U?;g_l Sj, and By = U?;;_p Sj so the b-code is determined by these sectors. Since for
any « the points #; = {wt + o} are spaced uniformly on the circle at a distance 1 from each
other, there is precisely one 6; in each S;. Thus the number of 0 and 1 symbols is independent
of a. Moreover if 6; € S;, then 0,11 € Sj4,, so that the cyclic order of symbols is independent

of a. 0

Note in particular, that all values —1/¢ < a < 0 give the canonical velocity code. Other
values of «, give a cyclic permutation of this “canonical” ordering for the code.

Corollary 13. For w = p/q the b-code has p 1’s and ¢ —p 0’s.
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The velocity codes for various frequencies can be easily constructed using a Farey tree pro-
cedure [23, 3]. A Farey tree is a binary tree that generates all numbers in an interval between
two “neighboring” rationals [47]. A pair of rationals % < % are neighbors if

mq—pn =1

The Farey tree is recursively constructed beginning with a base defined by a neighboring pair,
and recursively applying the Farey sum operation

to each neighboring pair. Note that g < g @<
each of its parents.

For example, the two rationals % and % define the base for a Farey tree that includes all
numbers in the unit interval, see Fig. 21. The root of the tree, or level zero, is the daughter
rational defined by the Farey sum of the base rationals. In this case the root is % Each
subsequent level of the tree consists of the rationals that are the Farey sum of each number on
the previous level with its two neighbors at earlier levels, thus there are 2/ rationals at level j.

Every irrational w € [0, 1] is uniquely determined by a path defined by an infinite sequence of
left, L, and right, R, transitions beginning at the root of the Farey tree. Every rational w € [0, 1]
is uniquely determined by a finite path. For example, the path for 5/13 is LRLR. There are also
paths in the Farey tree that do not correspond to real numbers: for example LRLLLLLLL ...
limits to %, but is better thought of as % 4 Dynamically this sequence corresponds to a ho-
moclinic orbit. The paths of the parents of any rational are easy to obtain by appropriately
truncating its path; for example, given a path LRLLL = %, then the direct parent is obtained
by simply removing the last symbol, LRLL = %. The other parent is obtained by removing all
of the final repeated symbols (L in this case) in the sequence and one more symbol, yielding the

_ 1
parent L = 3.

and that the daughter is a neighbor to

p"" = (0) b = (1)
1/2
(10)
1/3 2/3
/(100)\ /(110)\
1/4 2/5 3/5 3/4
1/5 2/7 3/8 3/7 4/7 5/8 5/7 4/5

(10000)  (1001000) (10100100) (1010100) (1101010) (11011010) (1110110)  (11110)

Figure 21: Farey tree for the base ¥ and 1 for levels zero to three, and the corresponding b-codes.
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Lemma 14. The canonical velocity code for the Farey daughter of neighbors % < I is the
concatenation of the codes of the parents:

(5o2) ()

Proof. Let w = ’;”LTT;Z denote the daughter, and 6; = wt. Then by(w) =i if {0,;} € B;(w). We first
show that the first n symbols are given by the code for ™, i.e. that {™¢} € B;(’") implies that
{6:} € Bi(w) for 0 <t < n.
Suppose first that b;("*) = 1, then there is an integer j such that
-2 <D<y (37)
n o n
Since w < %, the right inequality implies wt < j; providing ¢ > 0. This is the first half of what
we desired to show. Since ¢ is an integer, the left inequality in Eq. (37) implies that
m o1
—(t+1) >+
n n

Combining this with the relation

p+m m 1
w = = — — —F,
g+n n  n(g+n)
implies that
1 t+1
wt+1)>j+————x >3,
( )27 n  n(g+n) J

providing ¢ < ¢ +n — 1. Thus we have shown b;("*) =1 = b(w) =1,for 0 <t <qg+n—1
(this is more than we needed to prove).
To check that the 0 symbols agree, we must show that when there exists an integer j such
that
. m . m
J<—t<j+1-——
n n

then {6;} € Bp(w). A calculation similar to the previous one shows that this is true when
0<t<qg+n.

So finally we have shown that the symbol sequence b(w) is given by b(2) repeated, except
for the last symbol.

Similar calculations show that all symbols but the first in b;(w) agree with b(g), repeated
from the end. O

It is easy to see that Lemma 14 is consistent with the codes in the Farey tree in Fig. 21. For
example since b(1/3) = (100) and b(2/5) = (10100), then b(3/8) = b(2/5)b(1/3) = (10100100),
and since 3 = 2 @ 2, then b(5/13) = b(2/5)b(3/8) = (1010010100100).

Since all numbers can be constructed by Farey paths, Lemma 14 extends for irrational
numbers as well:

Corollary 15. For any w whose Farey path includes a parent rational 7> > w, the first n symbols
of b(w) are those of b("*).
Thus, for example the first 34 symbols in the code for =2 are given by those of its upper
Farey neighbor, %—Z, whose code can be constructed by concatenation:
b(13/34) = b(5/13)b(8/21) = b(5/13)b(5/13)b(3/8)
=b(2/5)b(3/8)b(2/5)b(3/8)b(3/8) = ...
= (1010010100100101001010010010100100) .
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A.3 Acceleration Codes

The acceleration code is defined to be the magnitude of the first difference of the velocity code

Ct = |bt — bt71| . (38)
This is well defined only for orbits with 0 < w < % It could also be called a “same-different” or
“exclusive-or” code, since ¢; = 0 if the velocities are the same and 1 if the velocity changes. The
point is that for w < %, there is a one-to-one correspondence between allowed b and acceleration
codes because the b-code can never have two or more consecutive 1 symbols, thus we obtain
¢t = 0 only for the case of a double 0 in the b code.

The acceleration code can be obtained geometrically by defining the sectors C (w) = (—w, w]
and C1(w) = (w,1 — w], so that ¢; =i when {wt + a} € C;(w). This follows because we obtain
¢ = 1 whenever by = 1 or b;_1 = 1. The canonical b-code can be reconstructed from the
canonical acceleration code by using the initial condition by = 1.

The geometrical construction shows that the symbol 1 always appears doubled in the accel-
eration code. Moreover, if m = |w™!], then the acceleration code consists of blocks of the form
110™2 and 110™~!. The acceleration code inherits properties of the b-code.

Corollary 16. The acceleration code for a rational w is independent of the phase a.

Corollary 17. The canonical acceleration code for a Farey-daughter is the concatenation of the
codes for its parents.

Proof. This follows from Lemma 14, and the fact that the first symbol in the b code is always 1
and the last is always 0. Thus concatenation does not disturb the calculation of the acceleration
code symbols. ]

The interiors of the sectors Cj(w) are identical to the interiors of the wedges W;(w) that
define the s-code in §3. Recall that hyperbolic codes were those in the interior of the W;. Thus
if we translate 0 and 1 into + and — appropriately, the acceleration and s-codes are identical
for hyperbolic orbits.

Lemma 18. If we set s; = sgn(2¢; — 1), then the acceleration code for an orbit of rotation
number w becomes the hyperbolic s-code.

For example, since the % hyperbolic orbit has acceleration code (110)°°, the correspond-
ing hyperbolic orbit for the Hénon map has s-code (— — 4)*°. The elliptic % orbit has code
(= + +)°°, obtained as usual by flipping the second symbol in the canonically ordered hyper-
bolic code; however, the elliptic codes do not arise directly from the twist map acceleration
code.

B Substitution Rules

An alternative code for rotational orbits is given by the Farey-substitution rule. This code has
been used for monotone circle maps [3], and turns out to be identical to the b-code.

A substitution rule acts on a symbol sequence s by replacing each symbol with a new se-
quence. Supposing that s € {L, R}*°, we define two substitution operators for left and right
transitions:

Fy(L)=L, Fy(R)=RL
Fr(L)=RL, Fr(R)=R. (39)

42



Then the symbol sequence for a number whose Farey path begins at a root with symbol sequence
s, is determined by applying the substitution operators in the same sequence. Thus, since 2/7
has Farey path LLR starting at 1/2 whose symbol sequence is (RL), the b code for 2/7 is

FrLFLFr(RL) = FLF,(RRL) = FL,(RLRLL) = RLLRLLL .
Note that this operation is associative, i.e. the above could also be read as
FrLFLFr(RL) = FLFLFr(R)FLFLFr(L) = FLF(R)FLF(RL) = FLFL(R)FLFL(R)L = ...

Lemma 19. The canonical hyperbolic b-code for a frequency w is given by applying the substi-
tution rule for its Farey path with the translation L =0 and R = 1.

Proof. As shown in Lemma 14, the canonical b-code for a Farey daughter is obtained by con-
catenation of the codes its parents. We will show that this concatenation rule is also valid for
the Farey-substitution rule. Combining this with the fact that the code for % is RL = 10, gives
the result.

As discussed in Appendix A.2, the Farey paths for the two parents are obtained by truncating
the path of the daughter by removing the last symbol, and all of the repeated last symbols plus
one more, respectively. Thus there are two possible cases. First if the path for the daughter is
W RL"™ for an arbitrary sequence W and n > 1, then we must show the concatenation rule

WRL" =W @ WRL™ " .

Translating this into substitutions applied to the root (RL), and using the associative property,
we obtain

Fw FrF}(RL) = Fw FRF[ "' (RLL) = Fy FRF ' (RL)W FrF}~'(L)
= FwFrF} ™" (RL)Fw(RL) = (W & WRL" ™),
which is what we wanted to show because the @ concatenation writes down the code of the right

neighbor first. A similar calculation holds in the other case, where the daughter is W LR"™, and
we can show

WLR"=WFLR" 'oW .
O

There are other substitution rules that apply to period doubling, and more generally n-
tupling sequences [3]. For example, the doubling substitution rule is

L—LR and R— LL

Applying this sequence to the sequence of w gives the sequence for 1/2 : w. Applying this
recursively gives the w bifurcations of any orbit from the period-doubling sequence.

C Symmetries and Codes of the Horseshoe

In this section we give simple geometric construction of the relation between the symbol plane
and an idealized phase space for the horseshoe map. This helps to visualize the relation between
the symmetry lines and the symmetries present in the symbolic codes. Instead of the standard
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smooth horseshoe map, we will use a discontinuous, area-preserving horseshoe map that is
defined everywhere on the square [—1, 1] except for the y axis:

(=22 —1,-3(1+y), =<0
2z -1,5(1+y)), x>0

H(z,y) = { )
see Fig. 22. The region z < 0 corresponds to the symbol .—, and > 0 to +. Thus the fixed

points of H are (+)*° = (1,1), and (—)*>® = (_%, _%)

+
1
+
+

- — — — — —

Figure 22: Idealized, discontinuous horseshoe map.

This horseshoe map is reversible, with symmetry S(x,y) = (y,z). As such, it can be factored
as H = RS, where

(-2:{/—1,—%(14-[]3)), y<0
(2y—1,%(1—|—3§')), y>0

Thus the fixed set of R is given by R = {y = —3(1+ ) : y < 0}U{y = :(1+2) : y > 0}.
Alternatively, we can factor H = ST as

R:HS:{

9

T=SH=1{ ',

(5(1—|—y),2:p—1), x>0
with a fixed set 7T = {y = —2r —1:2 <0} U{y =22 —1:2 > 0}. As usual, we divide the
symmetry lines into rays at the “elliptic” fixed point (—)°°, with the subscript ¢ denoting the
rays that lead to the hyperbolic point and o those that lead away, see Fig. 23.

We also show in Fig. 23, the period-two point (—.+)® = (1, —2) and its image (+.—)> =

3 1 . . . . . . .
—5,%)- i 05 s o
(=%, ). Note that these points lie on 7; and 7, respectively, in accord with Table 2 since H7,
R,. Similarly, the elliptic period 3 orbit has points (— + .+)>® = (%, %) €S, (++.—)*° =
99 0 . = 9r° 9/ I 1 I - =
(-%.3) e T,,and (+ — .4) (2,—%). The hyperbolic period 3 orbit has points ( +)°
(3,7 €T, (—+.9)° = (-7,7), and (+ — .-)* = (=2, -2) € S..

We can divide the symmetry lines into rays at the (—)°° fixed point. Note that points with
x larger than that for the elliptic fixed point will be on the ray that goes to the hyperbolic
point (labeled 7), and those with x smaller will be on the ray o. A standard result gives us the
ordering.

Lemma 20 (Ordering (c.f. [3, §2.3.2])). Suppose two symbol sequences s = 595152 ... and
s’ agree for their first j symbols, but that s; # s}. Then the corresponding points x and x’ on
the horseshoe are ordered as x < x' if the parity, Eq. (6), of sos1...s; is odd (and hence that of
8081 ... 8} is even).
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(+)”

(—-.4+)®

(-+)

(+-.4)”

Figure 23: Symmetry lines and periodic orbits of the discontinuous horseshoe. The two fixed points are shown

as a circle and z, the period-two points as squares, and the points on the two period-three orbits as triangles.

Thus sequences are ordered the same as their parities. This implies that symbol sequences for
the symmetry rays are distinguished by “odd” or “even” blocks of — symbols after the binary
point, see Eq. (21).
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