3 research outputs found

    Symbolic analysis of dataflow applications mapped onto shared heterogeneous resources

    No full text
    Embedded streaming applications require design-time temporal analysis to verify real-time constraints such as throughput and latency. In this paper, we introduce a new analytical technique to compute temporal bounds of streaming applications mapped onto a shared multiprocessor platform. We use an expressively rich application model that supports adaptive applications where graph structure, execution times and data rates may change dynamically. The analysis technique combines symbolic simulation in (max, +) algebra with worst-case resource availability curves. It further enables a tighter performance guarantee by improving the WCRTs of service requests that arrive in the same busy time. Evaluation on real-life application graphs shows that the technique is tens of times faster than the state-of-the-art and enables tighter throughput guarantees, up to a factor of 4, compared to the typical worst-case analysis

    Symbolic analysis of dataflow applications mapped onto shared heterogeneous resources

    No full text
    Embedded streaming applications require design-time temporal analysis to verify real-time constraints such as throughput and latency. In this paper, we introduce a new analytical technique to compute temporal bounds of streaming applications mapped onto a shared multiprocessor platform. We use an expressively rich application model that supports adaptive applications where graph structure, execution times and data rates may change dynamically. The analysis technique combines symbolic simulation in (max, +) algebra with worst-case resource availability curves. It further enables a tighter performance guarantee by improving the WCRTs of service requests that arrive in the same busy time. Evaluation on real-life application graphs shows that the technique is tens of times faster than the state-of-the-art and enables tighter throughput guarantees, up to a factor of 4, compared to the typical worst-case analysis

    System-level design of energy-efficient sensor-based human activity recognition systems: a model-based approach

    Get PDF
    This thesis contributes an evaluation of state-of-the-art dataflow models of computation regarding their suitability for a model-based design and analysis of human activity recognition systems, in terms of expressiveness and analyzability, as well as model accuracy. Different aspects of state-of-the-art human activity recognition systems have been modeled and analyzed. Based on existing methods, novel analysis approaches have been developed to acquire extra-functional properties like processor utilization, data communication rates, and finally energy consumption of the system
    corecore