98 research outputs found

    A p-multigrid method enhanced with an ILUT smoother and its comparison to h-multigrid methods within Isogeometric Analysis

    Full text link
    Over the years, Isogeometric Analysis has shown to be a successful alternative to the Finite Element Method (FEM). However, solving the resulting linear systems of equations efficiently remains a challenging task. In this paper, we consider a p-multigrid method, in which coarsening is applied in the approximation order p instead of the mesh width h. Since the use of classical smoothers (e.g. Gauss-Seidel) results in a p-multigrid method with deteriorating performance for higher values of p, the use of an ILUT smoother is investigated. Numerical results and a spectral analysis indicate that the resulting p-multigrid method exhibits convergence rates independent of h and p. In particular, we compare both coarsening strategies (e.g. coarsening in h or p) adopting both smoothers for a variety of two and threedimensional benchmarks

    A parallel multigrid solver for multi-patch Isogeometric Analysis

    Full text link
    Isogeometric Analysis (IgA) is a framework for setting up spline-based discretizations of partial differential equations, which has been introduced around a decade ago and has gained much attention since then. If large spline degrees are considered, one obtains the approximation power of a high-order method, but the number of degrees of freedom behaves like for a low-order method. One important ingredient to use a discretization with large spline degree, is a robust and preferably parallelizable solver. While numerical evidence shows that multigrid solvers with standard smoothers (like Gauss Seidel) does not perform well if the spline degree is increased, the multigrid solvers proposed by the authors and their co-workers proved to behave optimal both in the grid size and the spline degree. In the present paper, the authors want to show that those solvers are parallelizable and that they scale well in a parallel environment.Comment: The first author would like to thank the Austrian Science Fund (FWF) for the financial support through the DK W1214-04, while the second author was supported by the FWF grant NFN S117-0

    A Robust Multigrid Solver for Isogeometric Analysis Based on Multiplicative Schwarz Smoothers

    Get PDF
    The design of fast solvers for isogeometric analysis is receiving a lot of attention due to the challenge that offers to find an algorithm with a robust convergence with respect to the spline degree. Here, we analyze the application of geometric multigrid methods to this type of discretization, and we propose a multigrid approach based on overlapping multiplicative Schwarz methods as smoothers. The size of the blocks considered within these relaxation procedures is adapted to the spline degree. A simple multigrid V-cycle with only one step of presmoothing results in a very efficient algorithm, whose convergence is independent on the spline degree and the spatial discretization parameter. Local Fourier analysis is shown to be very useful for the understanding of the problems encountered in the design of a robust multigrid method for IGA, and it is performed to support the good convergence properties of the proposed solver. In fact, an analysis for any spline degree and an arbitrary size of the blocks within the Schwarz smoother is presented for the one-dimensional case. The efficiency of the solver is also demonstrated through several numerical experiments, including a two-dimensional problem on a nontrivial computational domain

    A two-level method for isogeometric discretizations based on multiplicative Schwarz iterations

    Get PDF
    Isogeometric Analysis (IGA) is a computational technique for the numerical approximation of partial differential equations (PDEs). This technique is based on the use of spline-type basis functions, that are able to hold a global smoothness and allow to exactly capture a wide set of common geometries. The current rise of this approach has encouraged the search of fast solvers for isogeometric discretizations and nowadays this topic is receiving a lot of attention. In this framework, a desired property of the solvers is the robustness with respect to both the polynomial degree p and the mesh size h. For this task, in this paper we propose a two-level method such that a discretization of order p is considered in the first level whereas the second level consists of a linear or quadratic discretization. On the first level, we suggest to apply one single iteration of a multiplicative Schwarz method. The choice of the block-size of such an iteration depends on the spline degree p, and is supported by a local Fourier analysis (LFA). At the second level one is free to apply any given strategy to solve the problem exactly. However, it is also possible to get an approximation of the solution at this level by using an h-multigrid method. The resulting solver is efficient and robust with respect to the spline degree p. Finally, some numerical experiments are given in order to demonstrate the good performance of the proposed solver
    corecore