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Abstract. The design of fast solvers for isogeometric analysis is receiving a lot of attention
due to the challenge that offers to find an algorithm with a robust convergence with respect to
the spline degree. Here, we analyze the application of geometric multigrid methods to this type of
discretization, and we propose a multigrid approach based on overlapping multiplicative Schwarz
methods as smoothers. The size of the blocks considered within these relaxation procedures is
adapted to the spline degree. A simple multigrid V-cycle with only one step of presmoothing results
in a very efficient algorithm, whose convergence is independent on the spline degree and the spatial
discretization parameter. Local Fourier analysis is shown to be very useful for the understanding of
the problems encountered in the design of a robust multigrid method for IGA, and it is performed
to support the good convergence properties of the proposed solver. In fact, an analysis for any
spline degree and an arbitrary size of the blocks within the Schwarz smoother is presented for the
one-dimensional case. The efficiency of the solver is also demonstrated through several numerical
experiments, including a two-dimensional problem on a nontrivial computational domain.
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multiplicative Schwarz methods
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1. Introduction. Isogeometric analysis (IGA) is a computational technique for
the numerical solution of partial differential equations (PDEs), which was introduced
by Hughes, Cottrell, and Bazilevs in the seminal paper [22]. Since then, this approach
has been widely applied within different frameworks, and a detailed presentation of
IGA together with a number of engineering applications can be found in the book [8].
IGA is based on the idea of using spline-type functions, which are exploited in com-
puter aided design (CAD) software for the parametrization of the computational do-
main, in order to approximate the unknown solution of the PDE. B-splines or nonuni-
form rational B-splines (NURBS) are the most commonly used functions. There are
several issues that make this approach advantageous over classical finite element meth-
ods (FEMs). First, it allows us to represent exactly some geometries like conic sec-
tions, and also more complicated geometries are represented more accurately by this
technique than by traditional polynomial based approaches. In addition, this precise
description of the geometry is incorporated exactly at the coarsest grid level, making
unnecessary further communication with the CAD system in order to do a mesh refine-
ment procedure, which moreover does not modify the geometry. Another important
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advantage is the higher continuity, since IGA provides up to Cp−1 interelement conti-
nuity, denoting p the polynomial order (see [7, 10]). This corresponds to the so-called
isogeometric k-method, which is one of the three refinement strategies for IGA pro-
posed in [22], together with the h-refinement (reducing the mesh size by knot insertion)
and p-refinement (order elevation, i.e., increase of the spline degree). The k-refinement
is unique to IGA and its main advantage is that it maintains the maximum possible
smoothness Cp−1 for the spline space of degree p. Due to its high performance, this
is the most popular refinement strategy in the IGA community, and this is the one
studied in this work.

From the computational point of view, the efficient solution of the linear systems
arising from the discretization of a PDE problem is a crucial point for its numerical
simulation. When a discretization with high spline degrees is considered, this issue
is even more challenging since the condition number of the stiffness matrices grows
exponentially with the spline degree. The study of the computational efficiency for
direct and iterative solvers was initiated in the papers [5, 6], respectively, and recently
the design of iterative solvers has attracted much attention in the isogeometric com-
munity. Many efforts have been devoted to develop efficient solvers for this type of
discretizations. For example, in [4] a multilevel BPX-preconditioner is developed in
the framework of IGA. Beirão da Veiga et al. analyze overlapping Schwarz methods
for IGA in [11], whereas in [12] they study BDDC preconditioners by introducing
appropriate discrete norms. In [16] algebraic multilevel iteration methods are ap-
plied for the isogeometric discretization of scalar second order elliptic problems. The
new isogeometric tearing and interconnecting method, which consists of a domain
decomposition solver based on the ideas of the finite element tearing/interconnecting
method, was proposed in [23]. In [27], the authors propose preconditioners based on
fast solvers for the Sylvester equation. In all these works, the difficulty in achieving
both robustness and computational efficiency for high-order isogeometric discretiza-
tions is reported.

For classical finite element, finite difference, or finite volume discretizations, multi-
grid methods [2, 17, 29] are well known to be among the fastest solvers showing op-
timal computational cost and convergence behavior. Thus, it seems natural to try
to extend these methods to IGA, and in fact, in the early IGA literature, multigrid
solvers for FEMs have been directly transferred to isogeometric discretizations with
only minimal adaptations. However, a naive application of these multigrid methods
to the isogeometric case results in an important deterioration of the convergence of
the algorithms when the spline degree is increased. In particular, multigrid methods
based on standard smoothers, like the Gauss–Seidel smoother, are not robust with
respect to the spline degree (see, e.g., [15]). It was observed in [14] that the spectral
radius of the multigrid iteration matrices based on standard smoothers tends to one
exponentially as p increases. As it was pointed out in [13], this bad behaviour is due to
the presence of many small eigenvalues associated with high-frequency eigenvectors.
This deterioration of the convergence of standard multigrid algorithms has motivated
advances toward robust multigrid methods with respect to the spline degree. In [14] a
multigrid method was constructed based on a preconditioned Krylov smoother at the
finest level and in [20] a mass matrix was proposed as a smoother within a multigrid
framework. For both methods, an increase in the number of smoothing steps was
needed in order to obtain robustness with respect to the spline degree. To avoid the
lack of robustness of the mass smoother, due to boundary effects, in [19] the authors
introduce a boundary correction to that relaxation. In that work, it was not clear,
however, how to extend this approach to three dimensions. To overcome this, in [18],
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the authors propose a multigrid smoother based on an additive subspace correction
technique, applying a different smoother to each of the subspaces. In the regular
interior subspace they use a mass smoother, whereas in the other subspaces they con-
sider relaxations which exploit the particular structure of the subspaces. The authors
observe a dependence of the convergence of this method on the space dimension and
on the geometry transformation. We would like to remark that in all previous works
the multigrid method is designed on the parametric domain and it is applied as a pre-
conditioner for solving the problem in general geometries. In this work, however, we
aim to propose a robust and efficient geometric multigrid algorithm for directly solv-
ing isogeometric discretizations on a general domain. This multigrid method is based
on a family of overlapping multiplicative Schwarz-type methods as smoothers. We
will show that by choosing an appropriate Schwarz-type smoother we can efficiently
remove those high-frequency components of the error associated with the small eigen-
values. This makes it possible to obtain a very simple and efficient solver by using a
multigrid V (1, 0)-cycle.

It is well known that many details are open for discussion and decision in the
design of a multigrid method for a target problem, since the performance of multigrid
algorithms strongly depends on the choice of their components. There are no rules
to facilitate this challenging task, but the local Fourier analysis (LFA) appears as
a very useful tool for the design of the algorithm. The LFA or local mode analysis
was introduced by Achi Brandt in [2, 3], and since then, it has become the main
quantitative analysis for the convergence of multigrid algorithms. This analysis is
based on the Fourier transform theory, and a good introduction can be found in
[28, 29, 30] and in the LFA monograph [31]. In particular, the application of LFA
to analyze the smoothing properties of multiplicative Schwarz-type smoothers is not
standard, and a special treatment is needed; see [24, 26]. LFA has not been widely
applied for the multigrid solution of isogeometric discretizations. This can be due to
the fact that in [21] the authors showed that in some cases the predictions of LFA did
not match the real asymptotic convergence factor of multigrid based on Richardson
relaxation for IGA as p increases due to boundary effects. We have seen, however, that
this is not the case when standard Jacobi and Gauss–Seidel smoothers are considered,
nor for the multiplicative Schwarz relaxations considered in this work. Thus, we want
to emphasize that this is the first time that an LFA is successfully used to predict the
multigrid convergence for IGA, showing the utility of this analysis for the design of
solution methods for IGA. In this work, LFA in one and two dimensions is performed
for isogeometric discretizations of the Poisson problem. Moreover, in particular, for
the one-dimensional case, we provide an analysis for any spline degree and an arbitrary
size of the blocks in the smoother. In this way, we can choose the suitable size of the
blocks to perform in the Schwarz smoother depending on the spline degree.

The rest of the paper is structured as follows. In section 2 the considered model
problem is described, together with the basics of IGA. Section 3 introduces the pro-
posed multigrid method, giving special emphasis to the description of the class of
multiplicative Schwarz methods used as smoothers. Moreover, at the end of this sec-
tion, the computational cost of these relaxations is derived in terms of the block-size.
The LFA technique considered for the study of the convergence of the multigrid al-
gorithm is introduced in section 4. The basics of LFA are included in this section,
as well as the nonstandard analysis necessary to study the proposed smoothers. At
the end of section 4, some results obtained from the LFA are presented. Section 5
is devoted to choosing the most efficient Schwarz smoother for each spline degree.
For this purpose, the computational cost derived in section 3 is combined with the

D
ow

nl
oa

de
d 

11
/0

4/
19

 to
 1

29
.1

87
.2

54
.4

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S324 A. PE DE LA RIVA, C. RODRIGO, AND F. J. GASPAR

convergence factors predicted by LFA to obtain the most efficient smoothing strat-
egy. Section 6 deals with the numerical results. One- and two-dimensional tests are
presented, including an example with a complex geometry to show the real power of
the isogeometric solver. Finally, in section 7 some conclusions are drawn.

2. Preliminaries. We consider the Poisson problem in d spatial dimensions on
the domain Ω = (0, 1)d with homogeneous Dirichlet boundary conditions,

−∆u = f in Ω,

u = 0 on ∂Ω.
(1)

The variational formulation of problem (1) is given by the following: find u ∈ H1
0 (Ω)

such that
a(u, v) = (f, v) ∀v ∈ H1

0 (Ω),

where

a(u, v) =

∫
Ω

∇u · ∇v dx and (f, v) =

∫
Ω

fv dx.

Given a finite dimensional approximation space Vh ⊂ H1
0 (Ω), the Galerkin approxi-

mation of the variational problem reads as follows: find uh ∈ Vh such that

a(uh, vh) = (f, vh) ∀vh ∈ Vh.(2)

If we fix a basis {ϕ1, . . . , ϕnh
} for Vh, dimVh = nh, then the solution of problem

(2) can be written as uh =
∑nh

i=1 uiϕi. The coefficient vector u = (u1, . . . , unh
)

can be computed by solving the linear system Au = b, where A is the stiffness
matrix obtained from the bilinear form a(·, ·), i.e., A = (ai,j) = (a(ϕj , ϕi))

nh
i,j=1, and

b = (f, ϕi)
nh
i=1 is the right-hand-side vector. In FEMs, the chosen approximation space

Vh is usually a space of continuous piecewise polynomials, whereas in the IGA Vh is
a space of functions with higher continuity (up to order p− 1, p being the polynomial
degree of the B-spline). In this work, the solution of the variational formulation of
problem (1) is approximated in a spline space of degree p with maximum smoothness,
i.e., with Cp−1 regularity.

First, let us consider the simplest case when d = 1 (one-dimensional problem).
The computational domain then is the interval Ω = (0, 1) and the corresponding
two-point boundary value problem is

−u′′(x) = f(x), x ∈ Ω, u(0) = u(1) = 0.

Let the interval (0, 1) be subdivided into m ∈ N subintervals Ii = ((i − 1)h, ih),
i = 1, . . . ,m, with h = 1/m, and consider the knot sequence

Ξp,h={ξ1 = · · · = ξp+1 = 0 < ξp+2 < · · · ξp+m < 1 = ξp+m+1 = · · · = ξ2p+m+1} ,(3)

where ξp+i+1 = i/m, i = 0, . . . ,m. We define the spline space of degree p ≥ 1 with
maximum continuity

Sp,h(0, 1) =
{
uh ∈ Cp−1(0, 1) : uh|Ii ∈ Pp, i = 1, . . . ,m, uh(0) = uh(1) = 0

}
,(4)

where Cp−1(0, 1) is the space of all p − 1 times continuously differentiable functions
on (0, 1), and Pp is the space of all polynomials of degree less than or equal to p.
The dimension of the space Sp,h(0, 1) is p + m − 2, and the set of basis functions

{Np
i }

p+m−1
i=2 of this space is defined recursively by the Cox-de-Boor formula (see [9]),

starting with p = 0 (piecewise constants).
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Definition 1 (basis functions). Given the knot sequence Ξp,h as in (3), the ith
piecewise constant B-spline basis function N0

i : [0, 1] → R, i = 1, . . . ,m + 2p, is
defined as

N0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1,
0 otherwise.

(5)

For every pair (k, i) such that 1 ≤ k ≤ p, 1 ≤ i ≤ m + 2p − k, the basis functions
Nk
i : [0, 1]→ R are given recursively by the Cox-de-Boor formula:

Nk
i (ξ) =

ξ − ξi
ξi+k − ξi

Nk−1
i (ξ) +

ξi+k+1 − ξ
ξi+k+1 − ξi+1

Nk−1
i+1 (ξ).(6)

Remark. Note that the previous formula can yield quotients of the form 0/0 if
there are repeated knots, that is, ξi = ξi+k or ξi+1 = ξi+k+1. In these cases, the
denominator is clearly equal to zero and the support of the corresponding B-spline
basis functions with polynomial degree k − 1 is empty, making the numerator equal
to zero too. Fractions of the form 0/0 are considered as zero.

In the case of higher spatial dimensions d > 1, the previous definitions are easily
generalized by means of tensor product. For simplicity, we assume that the spline
degree p and the number of subintervals m are the same in all directions. However,
this is not restrictive for the solver proposed in this work. In this way, over the domain
Ω = (0, 1)d we define the spline space

Sp,h(Ω) = Sp,h(0, 1)⊗ · · · ⊗ Sp,h(0, 1)︸ ︷︷ ︸
d

.

In the two-dimensional case, d = 2, the knot vector

Ξp,h × Ξp,h = {(ξ, η), ξ ∈ Ξp,h, η ∈ Ξp,h}

generates a mesh of rectangular elements in the parametric space. The spline space
is Sp,h(0, 1)2 = Sp,h(0, 1)⊗ Sp,h(0, 1) and the bivariate B-splines basis is constructed
by the tensor product of univariate B-splines basis. In this way a basis function Np

i,j :

[0, 1]2 → R is defined in terms of the univariate basis functions Np
i , N

p
j : [0, 1]→ R as

follows:
Np
i,j(ξ, η) =

(
Np
i ⊗N

p
j

)
(ξ, η) = Np

i (ξ)Np
j (η).

In particular, for our model problem we can write

Sp,h(0, 1)2 = span
{
Np
i,j(ξ, η), i, j = 1, . . . , p+m− 2

}
.

All the ideas presented here can be extended to solve PDEs in more complicated
domains Ω. In the IGA, Ω is usually given by a NURBS parametrization. In this
way, conic sections, such as circles and ellipses, can be represented exactly. NURBS
are built through rational functions of B-splines. A NURBS basis function of degree
p is

Rpi (ξ) =
ωiN

p
i (ξ)∑p+m

k=1 ωkN
p
k (ξ)

,

where {ω1, . . . , ωp+m} is a given set of weights. In the two-dimensional case, NURBS
basis functions are defined as

Rpi,j(ξ, η) =
ωi,jN

p
i,j(ξ, η)∑p+m

k,l=1 ωk,lN
p
k,l(ξ, η)

,
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B1,1 B1,2 B1,3

B2,1

B2,2

B2,3

B3,1

B3,2

B3,3
i j Bi,j ωi,j
1 1 (0.3, 0) 1
1 2 (0.4, 0) 1
1 3 (0.5, 0) 1

2 1 (0.3, 0.3) 1/
√

2

2 2 (0.4, 0.4) 1/
√

2

2 3 (0.5, 0.5) 1/
√

2
3 1 (0, 0.3) 1
3 2 (0, 0.4) 1
3 3 (0, 0.5) 1

(a) (b)

Fig. 1. Example of quadratic NURBS transformation of a quarter of an annulus with small
radius r = 0.3 and large radius R = 0.5: (a) control mesh and (b) control points and their corre-
sponding weights.

and the domain Ω is represented by a geometry transformation F : (0, 1)2 → Ω
given by

F(ξ, η) =

p+m∑
i=1

p+m∑
j=1

Bi,jR
p
i,j(ξ, η).

Thus, a transformation F is determined by the so-called control points Bi,j and their
associated weights ωi,j . In order to illustrate this type of transformations, we intro-
duce an example of a quadratic NURBS parametrization of a quarter annulus domain,
which will be used later for one of our numerical experiments. In Figure 1(a), we show
the control mesh needed for mapping this physical domain. Since these transforma-
tions are based on noninterpolatory spline basis functions, the control points can be
interpreted as a scaffold for the physical mesh. In Figure 1(b) we provide the control
points together with the corresponding weights.

Now, the basis functions on Ω are defined by composing the basis functions on the
parametric domain with the inverse of the geometry transformation, that is, Ri,j◦F−1,
and therefore the finite dimensional approximation space in our model problem is

Vh = span
{
Ri,j ◦ F−1, i, j = 1, . . . , p+m− 2

}
.

3. Multigrid method. Multigrid methods are based on the smoothing prop-
erty of a classical iterative algorithm and the acceleration of its convergence by a
coarse-grid correction technique. In particular, the first step is to approximate the
solution of the system on the fine space Vh by using the classical iterative method
Sh, which within the multigrid community is called a smoother or relaxation pro-
cedure. Given an approximation of the solution umh , if ν1 presmoothing steps are
applied, it is obtained that ūmh = Sν1h u

m
h . The smoother is in charge of annihilating

the high-frequency components of the error, yielding a smooth error which can be
well represented on a coarser space V2h, where the computations are much cheaper.
Notice that, as usual, we denote the coarse space with the subscript 2h since standard
coarsening is assumed. After the relaxation step, the residual r̄mh = fh − Ahūmh is
transferred to the coarse space, r̄m2h = I2h

h r̄mh , by means of an appropriate restriction
operator I2h

h . There, the defect equation
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A2hê
m
2h = r̄m2h(7)

must be solved. The error correction obtained on the coarse grid is then transferred
back to the fine grid êmh = Ih2hê

m
2h by using a suitable prolongation operator Ih2h.

This value is used to correct the previous approximate solution and to obtain the
new approximation ūm+1

h = ūmh + êmh to which we can apply ν2 smoothing iterations,
um+1
h = Sν2h ū

m+1
h . When this algorithm is applied recursively on the coarse level to

solve the defect equation (7) we obtain the multigrid method. In our case, we first
consider a coarsest B-spline space Vh0

of order p, which is obtained by a k-refinement
strategy, and then we build a sequence Vh0 ⊂ Vh1 ⊂ · · · ⊂ Vh`

of nested B-spline
spaces that have been obtained through uniform and global h-refinement by knot
insertion, where Vh`

is our target space. The procedure of knot insertion not only
allows for B-spline refinement, but it also provides the way of building the intergrid
transfer operators associated with the multigrid method. In this way, we consider the
canonical spline embedding operator as the prolongation operators Ihk

hk−1
and their

adjoint for the restriction operators I
hk−1

hk
for k = 1, . . . , `. Then, the coarse-grid

operators will be constructed by Galerkin approximation. Regarding the type of
cycle, we will demonstrate that V -cycles perform similarly as W -cycles, and therefore
the former ones will be preferred. Moreover, we will also see that one smoothing step
of a multiplicative Schwarz relaxation will be enough to obtain a very efficient and
robust multigrid for IGA.

It is well known that multigrid methods based on simple pointwise smoothers
such as Gauss–Seidel relaxation do not behave well when applied to isogeometric dis-
cretizations with larger values of p. In order to see this behavior we consider the
one-dimensional model problem (1). In Figure 2(a), the number of iterations neces-
sary to reduce the residual until 10−10 are displayed for different values of p from 2
to 8. In this picture, we do not represent all the iteration markers on the convergence
lines so that the different markers can be distinguished. Notice that the convergence
for p = 2 and p = 3 is very similar and the corresponding convergence lines overlap
and almost cannot be distinguished. The deterioration of the multigrid convergence
is clear as soon as p becomes larger. This implies that such a multigrid method is not
reliable for large p, although its convergence is independent on the spatial discretiza-
tion parameter for a fixed value of p. This latter can be seen in Figure 2(b), where
the history of the multigrid convergence is shown for p = 4 with different target grids.
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Fig. 2. History of the convergence of a V (1, 0)-multigrid method based on Gauss–Seidel relax-
ation for (a) different values of order p and (b) a fixed value p = 4 and different grid-sizes.
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Pointwise smoothers can be generalized to blockwise iterations by updating si-
multaneously a set of unknowns at each time, instead of only one. This is done by
splitting the grid into blocks and solving together the equations corresponding to the
grid-points in each block. There are many possibilities to construct these blocks. One
can allow the blocks to overlap, giving rise to the class of overlapping block iterations,
where smaller local problems are solved and combined via an additive or multiplicative
Schwarz method.

More specifically, the description of the multiplicative Schwarz iteration applied
to the system Au = b of order nh (see section 2) is as follows. Let us denote as
B the subset of unknowns involved in an arbitrary block of size nd, that is, B ={
uk1 , . . . , uknd

}
, where ki is the global index of the ith unknown in the block. In

order to construct the matrix to solve associated with such a block, that is, AB ,
we consider the projection operator from the vector of unknowns u to the vector of
unknowns involved in the block. This results in a matrix VB of size (nd × nh), whose
ith row is the kith row of the identity matrix of order nh. Thus, matrix AB is obtained
as AB = VBAV

T
B , and the iteration matrix of the multiplicative Schwarz method can

be written as
NB∏
B=1

(
I − V TB (AB)−1VBA

)
,

where NB denotes the number of blocks obtained from the splitting of the grid, which
corresponds to the number of small systems that have to be solved in a relaxation
step of the multiplicative Schwarz smoother.

Here we consider multiplicative Schwarz methods with maximum overlapping. In
the one-dimensional case, our smoother will be based on blocks of three, five, or seven
points, depending on the spline degree p. Our study will be carried out up to p = 8,
but if one is interested in solving isogeometric discretizations with spline degree larger
than p = 8, it is only necessary to find the appropriate number of unknowns involved
in the blocks to obtain an efficient multigrid approach. In the one-dimensional case,
the block of size n associated with the ith unknown is composed of the unknown
ui, the (n − 1)/2 unknowns on the right side of ui and the (n − 1)/2 unknowns on
its left side. More concretely, for the three-point multiplicative Schwarz smoother
B = {ui−1, ui, ui+1}, whereas for the seven-point relaxation, for example, we have
B = {ui−3, ui−2, ui−1, ui, ui+1, ui+2, ui+3}. In Figure 3 the corresponding blocks and
the overlapping between them are schematized for the three-, five-, and seven-point
multiplicative Schwarz smoothers (Figures 3(a), (b), and (c), respectively). In the
two-dimensional case, we use the same idea, that is, we choose square blocks of size
n× n around the unknown ui,j , yielding, for example, to the block

B = {ui−1,j−1, ui,j−1, ui+1,j−1, ui−1,j , ui,j , ui+1,j , ui−1,j+1, ui,j+1, ui+1,j+1}

for the nine-point multiplicative Schwarz smoother (n = 3). In the same way, we will
also consider the 25- and 49-point multiplicative Schwarz smoothers.

In order to choose an appropriate multiplicative Schwarz smoother for each spline
degree p, it is important to take into account the computational cost of these relax-
ations, as well as the convergence factor that the multigrid method based on these
methods provides. In the next section, we will introduce a local Fourier analysis that
will help to predict such convergence rates and will give a very good insight about why
these relaxations work well. The computational cost of the considered multiplicative
Schwarz smoothers is studied next.
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Fig. 3. Size and overlapping of the blocks for the one-dimensional smoothers: (a) three- (b)
five-, and (c) seven-point multiplicative Schwarz iterations.

We would like to study the computational complexity of applying the proposed
block smoothers in a general d-dimensional setting. Since we consider a multiplicative
Schwarz smoother with maximum overlapping, small dense systems

ABδuB = dB ,(8)

of size nd, where dB is the local defect and δuB is the correction, have to be solved for
each degree of freedom. The computationally most expensive parts of the smoothing
iteration are the matrix-vector multiplication required to calculate the local residual
dB and the solution of dense system (8). By using a standard approach, the cost of the
calculation of each local defect is O(n2d). By exploiting the tensor product structure
of the B-spline basis functions, sum-factorization [25] can be applied and the cost
can be reduced to O(dnd+1). The cost of solving system (8) depends on the chosen
method. Assuming that the inverse of matrix AB is stored or the resulting L and U
factors are stored in a block LU -factorization, the cost of calculating the correction
is O(n2d). Direct solvers such as Gauss elimination methods require a computational
cost of order O(n3d). As pointed out in [1], if Krylov-subspace methods such as the
conjugate gradient iteration are chosen for solving system (8), and if sum-factorization
techniques are used, the global complexity is reduced to O(d it(ε)nd+1), where it(ε) is
the number of iterations required to solve the system to accuracy ε (see [1] for more
details).

In this work, we have applied sum-factorization to calculate the residual, and the
solution of the small dense systems is done by using LU -factorization. Therefore,
the global computational cost of the multiplicative Schwarz smoother per iteration is
O(NDOF n

2d), where NDOF is the total number of degrees of freedom. In addition,
we have to take into account that the LU -factorization for solving the small dense
systems is computed in a setup phase. In the case in which no transformation is
necessary to deal with the geometry of the computational domain, the cost of this
setup phase is negligible since the factorization is the same for most degrees of freedom.
For nontrivial geometries, this factorization, however, is computed for every degree of
freedom and then the setup phase increases the computational cost of the algorithm.

4. Local Fourier analysis. In this section we introduce the basics of the LFA
and describe its application to IGA. First we will apply LFA to understand the dif-
ficulties in designing an appropriate multigrid for IGA and how this tool gives us
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insight to achieve this challenging task. After that, we will introduce LFA for over-
lapping multiplicative Schwarz smoothers. For simplicity in the presentation, we will
describe the analysis for the one-dimensional problem. This analysis, however, has
been performed for the two-dimensional case too. In fact, in the LFA results section,
estimates for both the one- and two-dimensional cases are provided.

4.1. Basics of LFA. The main idea of LFA is to assume a decomposition of
the error function in Fourier modes, and then to study the behavior of each operator
involved in the multigrid method on these components. Some assumptions should
be considered to perform this analysis. In particular, LFA presumes that all the op-
erations involved in the multigrid algorithm are local processes neglecting the effect
of boundary conditions. Then, a regular infinite grid, Gh, is assumed, which is ob-
tained by the infinite extension of the considered spatial grid. By imposing some
assumptions on the discrete operator Ah, as linearity and constant coefficients, the
rows of the system matrix corresponding to degrees of freedom in the interior of the
domain may have a natural Toeplitz or multilevel Toeplitz structure. The key idea
of LFA is to ignore the effect of boundary conditions, which would result in a set
of rows with quite different values, and to extend the operator from the interior of
the domain to the uniform infinite grid Gh. On such a grid, the discrete operator is
represented as an infinite-grid (multilevel) Toeplitz matrix, which can be diagonalized
by the matrix of Fourier modes. These are complex exponential eigenfunctions of the
operator defined as ϕh(θ, x) = eıθx/h, with x ∈ Gh and where θ ∈ Θh := (−π, π],
yielding the so-called Fourier space F(Gh) := span{ϕh(θ, x) | θ ∈ Θh}. These Fourier
components are divided into high- and low-frequency components on Gh. We call low-
frequency components to those Fourier modes associated with frequencies belonging
to Θ2h = (−π/2, π/2] (low frequencies), and the high-frequency components are those
corresponding to the high frequencies θ ∈ Θh\Θ2h. This classification depends on the
coarsening strategy that we consider, which in this case is standard coarsening, that
is, the coarse-grid step size is obtained by doubling the step size of the fine grid.

Under the previous assumptions on the discrete operator, the Fourier components
satisfy that Ahϕh(θ, x) = Ãh(θ)ϕh(θ, x). This means that the Fourier components
are “eigenfunctions” of the discrete operator, and the corresponding “eigenvalues”
give rise to the so-called Fourier symbol of the operator, Ãh(θ). Notice that in our
context, Ah denotes the stencil of the IGA variational form and satisfies the considered
assumptions. As an example, the one-dimensional IGA discrete Laplace operator with
p = 2 is given in stencil form (see [29] for stencil notation),

Ah,2 =
1

h

[
−1

6
,−1

3
, 1,−1

3
,−1

6

]
,

and its Fourier symbol is given by

Ãh,2(θ) =
1

h

(
1− 2 cos(θ)

3
− 2 cos(2θ)

6

)
=

2

3h
(2− cos θ(1 + cos θ)).

In Figure 4(a) the eigenvalues of Ah,2 are displayed, together with those corre-
sponding to the symbols of operators Ah,5 and Ah,8, that is, the discrete operators
associated with p = 5 and p = 8, respectively. We can observe an important dif-
ference between the eigenvalues of Ah,2 and those for Ah,5 and Ah,8. Opposite to
the case p = 2, when p = 5 or p = 8, there are many small eigenvalues associated
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Fig. 4. Symbol of (a) the discrete operator and (b) the Gauss–Seidel smoothing operator, for
three different spline degrees p = 2, 5, 8.

with high-frequency eigenvectors. This was also pointed out in [13], and it slows
down the convergence of classical multigrid methods since a standard smoother can-
not provide an efficient damping of the components of the error associated with the
high frequencies. In order to illustrate this, we analyze the Fourier representation
of a Gauss–Seidel relaxation procedure. The Fourier components are also eigenfunc-
tions of the smoothing iteration matrix Sh, which relates the error grid functions at
two consecutive relaxation iterations. This means that we can obtain the error am-
plification factor or Fourier symbol of Sh with respect to each frequency θ, that is,
S̃h(θ) (see [29, 31] for basic details). This is shown in Figure 4(b) for a lexicographic
Gauss–Seidel smoother and the three different values of p previously considered. It
can be observed how this classical relaxation fails to annihilate the high-frequency
components for p = 5 and p = 8, whereas it effectively reduces such Fourier modes
for p = 2. This is the reason why the careless application of a standard multigrid to
IGA yields a deterioration of the convergence as the spline degree gets larger, as we
previously reported in Figure 2(a). The translation of the smoothing property, that
is, the capacity of the smoother to eliminate the high-frequency components of the
error, into a quantitative measure is the so-called smoothing factor, which is given as
follows:

µ = sup
Θh\Θ2h

∣∣∣S̃h(θ)
∣∣∣ .

This measure, however, is not enough to analyze the interplay between the smoother
and the coarse-grid correction technique that accelerates its convergence. In order
to get more insight into the behavior of the multigrid method, taking into account
the influence of the intergrid transfer operators and the other components involved
in the coarse-grid correction, at least a two-grid analysis is needed. The two-grid
analysis consists of estimating the spectral radius of the two-grid operator. This error
propagation operator is given as

M2h
h = Sν2h

(
Ih − Ih2hA−1

2h I
2h
h Ah

)
Sν1h ,

where Ah and A2h represent the discrete operators in the fine and coarse grids, I2h
h

and Ih2h denote the restriction and prolongation operators, respectively, and ν1 and ν2

are the numbers of pre- and postsmoothing steps. It is well known that the intergrid
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transfer operators, and as a consequence the two-grid operator, couple some Fourier
components. In particular, in the transition between fine and coarse grids, each low-
frequency θ0 ∈ Θ2h is coupled with a high-frequency θ1 = θ0 − sign(θ0)π, giving rise
to the so-called spaces of 2h-harmonics: F2(θ0) = span

{
ϕh(θ0, x), ϕh(θ1, x)

}
. This

implies that the Fourier representation of the two-grid operator M2h
h with respect to

F2(θ0), denoted by M̃2h
h (θ0), is a 2× 2-matrix. We determine the spectral radius of

M2h
h by calculating the spectral radius of these smaller matrices, that is,

ρ2g = ρ
(
M2h
h

)
= sup
θ0∈Θ2h

ρ
(
M̃2h
h (θ0)

)
.

Although the two-grid analysis is the basis for the classical asymptotic multigrid
convergence estimates, a three-grid (or even a k-grid) analysis provides a deeper in-
sight into the performance of multigrid. This analysis is crucial, for example, to study
the behavior of V -cycles and the difference between the choice of pre- and postsmooth-
ing steps. The error propagation matrix of a three-grid cycle (see, e.g., [31]) can be
written as follows:

M4h
h = Sν2h

(
Ih − Ih2h

(
I2h −

(
M4h

2h

)γ)
A−1

2h I
2h
h Ah

)
Sν1h ,

where M4h
2h is the two-grid operator between the two coarse grids, that is,

M4h
2h = Sν22h

(
I2h − I2h

4hA
−1
4h I

4h
2hA2h

)
Sν12h,

and γ denotes the number of times that the latter two-grid operator is applied. This
parameter γ is also called the cycle index since its value determines if V - or W -cycles
are considered (γ = 1 or γ = 2, respectively). In order to analyze how this three-
grid operator acts on the Fourier modes, we take into account that not only in the
transition from the finest to the second grid but also in the transition from the second
to the coarsest grid there are some Fourier modes that are coupled. More concretely,
four frequencies are coupled, and then we can define the so-called subspaces of 4h-
harmonics as F4(θ0) = span{ϕh(θαβ ) |α, β ∈ {0, 1}}, where θ0 ∈ Θ4h = (−π/4, π/4]

and θαβ = θ0−α sign(θ0)π/2+(−1)α+ββ sign(θ0)π. Thus, based on the decomposition
of the Fourier space in terms of the subspaces of 4h-harmonics, we can reduce the
computation of the spectral radius of the three-grid operator to the calculation of the
supremum of the spectral radii of the 4×4 Fourier representations on these subspaces,
M̃4h
h (θ0), that is,

ρ3g = ρ
(
M4h
h

)
= sup
θ0∈Θ4h

ρ
(
M̃4h
h

(
θ0
))
.

This LFA can be applied in two dimensions as well. In particular, we study the
Fourier symbol of the discrete Laplace operator Ah,p as we did before for the one-
dimensional case. The results for three different spline degrees p = 2, 5, 8 are shown in
Figure 5, where again we can observe behavior similar to that obtained in one dimen-
sion. For p = 2 the eigenvalues associated with the high frequencies are mainly large,
whereas as p grows up there appear more and more small eigenvalues correspond-
ing to the high-frequency components. This implies that a standard two-dimensional
smoother won’t be able to completely annihilate the high-frequency components of
the error and consequently a simple multigrid method will deteriorate its convergence
as p gets larger.
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(a) (b) (c)

Fig. 5. Symbol of the two-dimensional discrete Laplace operator Ah,p for three different spline
degrees: (a) p = 2, (b) p = 5, and (c) p = 8.

4.2. Local Fourier analysis for overlapping smoothers. In this section
we describe the LFA for the class of overlapping multiplicative Schwarz smoothers
considered in this work. With this purpose, we follow the methodology described in
[26] and the notation therein. This type of multiplicative Schwarz smoothers satisfy
the invariance property, in the sense that the Fourier modes are their eigenvectors
(see [24] for a rigorous proof). The trouble, however, comes from their overlapping
character. Due to this, the unknowns are updated more than once, which implies
that, in addition to the initial and final errors, some intermediate errors appear,
which have to be taken into account in the analysis. This makes necessary a special
strategy to carry out the LFA for overlapping block smoothers. For simplicity in the
presentation, we describe the analysis for the overlapping three-point multiplicative
Schwarz smoother in one dimension applied to the isogeometric discretization with
p = 2. At the end of this section we provide an expression to compute the symbol
of the smoothing operator for any one-dimensional n-point multiplicative Schwarz
relaxation for an arbitrary spline degree p.

For the considered case, at any grid-point ξi, three equations corresponding to
the unknowns ui−1, ui, and ui+1 are solved simultaneously. The block to solve, in
terms of corrections and residuals, is given as follows:

1

h

 1 −1/3 −1/6
−1/3 1 −1/3
−1/6 −1/3 1

 δui−1

δui
δui+1

 =

 ri−1

ri
ri+1

 .(9)

The corrections can be written in terms of the errors:

δui−1 = ek+1
h (ξi−1)− ek+2/3

h (ξi−1),

δui = e
k+2/3
h (ξi)− ek+1/3

h (ξi),

δui+1 = e
k+1/3
h (ξi+1)− ekh(ξi+1),

where ekh denotes the initial error at k-iteration, ek+1
h represents the final error, and

we define as e
k+1/3
h and e

k+2/3
h the intermediate errors appearing after the unknown

has been updated once or twice, respectively. Thus, when solving the ith block, for
example, unknown ui−1 has been already relaxed twice, and it will be updated the
final third time. Without loss of generality, we consider that the error is given as
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a single Fourier mode multiplied by a coefficient α
(m)
θ , where m = 0, 1, 2, 3 is the

number of times that the unknown has been updated in the current iteration. In this
way, we can rewrite system (9) as follows:

1

h

 1 −1/3 −1/6
−1/3 1 −1/3
−1/6 −1/3 1



(
α

(3)
θ − α

(2)
θ

)
e−ıθ(

α
(2)
θ − α

(1)
θ

)(
α

(1)
θ − α

(0)
θ

)
eıθ



= − 1

h


− 1

6α
(3)
θ e−ı3θ − 1

3α
(3)
θ e−ı2θ + α

(2)
θ e−ıθ − 1

3α
(1)
θ −

1
6α

(0)
θ eıθ

− 1
6α

(3)
θ e−ı2θ − 1

3α
(2)
θ e−ıθ + α

(1)
θ −

1
3α

(0)
θ eıθ − 1

6α
(0)
θ eı2θ

− 1
6α

(2)
θ e−ıθ − 1

3α
(1)
θ + α

(0)
θ eıθ − 1

3α
(0)
θ eı2θ − 1

6α
(0)
θ eı3θ

 .

Notice that the right-hand side in the previous expression is easily obtained writing
the residual in terms of the error. Since our aim is to find the relation between the
initial and the fully corrected errors, we rearrange the previous system into a system
of equations for the updated coefficients, that is,

 −
1
6e
ıθ − 1

3 e−ıθ − 1
3e
−ı2θ − 1

6e
−ı3θ

− 1
3e
ıθ 1 − 1

3e
−ıθ − 1

6e
−ı2θ

eıθ − 1
3 − 1

6e
−ıθ


︸ ︷︷ ︸

P

 α
(1)
θ

α
(2)
θ

α
(3)
θ

 =

 0
1
6e
ı2θ

1
3e
ı2θ + 1

6e
ı3θ


︸ ︷︷ ︸

Q

α
(0)
θ .

The amplification factor for the error is given by the last component of P−1Q, since

this one represents how the Fourier coefficient of the fully corrected error α
(3)
θ is related

with that of the initial error α
(0)
θ . Once that we have the symbol of the smoothing

operator S̃h(θ) = (P−1Q)3, the smoothing and k-grid LFA can be carried out as
explained before in the standard way.

This analysis can be generalized for any isogeometric discretization with spline
degree p. The corresponding stencil has (2p + 1) elements and it has the following
form: Ah,p = [ap, ap−1, . . . , a1, a0, a1, . . . , ap−1, ap] . Then, the matrices P and Q for
the three-point multiplicative Schwarz smoother are given as follows:

P =

 a2e
ıθ a1

∑p
j=0 aje

−ı(j+1)θ

a1e
ıθ a0

∑p
j=1 aje

−ıjθ

a0e
ıθ a1

∑p
j=2 aje

−ı(j−1)θ

 , Q =

 −
∑p
j=3 aje

ı(j−1)θ

−
∑p
j=2 aje

ıjθ

−
∑p
j=1 aje

ı(j+1)θ

 .

It is even more interesting to analyze multiplicative Schwarz iterations with larger
blocks, since our strategy will be to increase the size of the blocks as the spline degree
p increases. LFA for these relaxations can be done in the same way as that for the
three-point multiplicative Schwarz smoother, but with heavier computations. Since
we consider blocks centered around a grid-point, the number of unknowns within the
block, n, is odd. Matrices P and Q for an arbitrary n-point multiplicative Schwarz
iteration are (n× n)- and (n× 1)-matrices respectively given by
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P = PDP , and Q =



−
∑p
j=n aje

ı(j−n−1
2 )θ

−
∑p
j=n−1 aje

ı(j−n−1
2 +1)θ

...
−
∑p

j= n−1
2 +1

aje
ıjθ

−
∑p

j= n−1
2

aje
ı(j+1)θ

...

−
∑p
j=1 aje

ı(j+ n−1
2 )θ


,

where matrix P is

an−1 an−2 an−3 · · · an−1
2

· · · a2 a1

∑p
j=0 aje

−ı(j+ n−1
2 )θ

an−2 an−3 · · ·
... . . . a1 a0

∑p
j=1 aje

−ı(j+ n−1
2 −1)θ

an−3 · · ·
... · · · a0 a1

∑p
j=2 aje

−ı(j+ n−1
2 −2)θ

...
...

...
... a0

∑p

j= n−1
2

aje
−ıjθ

...
... .

...

a2 a1 a0 · · · . . . · · · an−4

∑p
j=n−3 aje

−ı(j−n−1
2 +2)θ

a1 a0 a1 · · · . . . · · · an−4 an−3

∑p
j=n−2 aje

−ı(j−n−1
2 +1)θ

a0 a1 · · · · · · an−1
2

· · · an−3 an−2

∑p
j=n−1 aje

−ı(j−n−1
2 )θ



,

and DP is the following diagonal matrix:

DP = diag
{
eı

n−1
2 θ, eı(

n−1
2 −1)θ, . . . , eıθ, 1, e−ıθ, . . . , e−ı(

n−1
2 −1)θ, 1

}
.

Thus, the presented LFA can be used for the choice of an adequate multiplicative
Schwarz smoother for each spline degree. In particular, as we did previously for
Gauss–Seidel relaxation, we can study if the class of multiplicative Schwarz smoothers
is able to eliminate the high-frequency components of the error for IGA with a large
spline degree. In Figure 6 we show the symbol of the smoothing operator of the three-
point and five-point Schwarz relaxations for each considered p. For p = 2, we can see
that the three-point approach is enough to adequately remove the high components.
This approach, however, provides worse results for p = 8. If, alternatively, we choose
the five-point multiplicative Schwarz smoother, we can see in the picture that the
high frequencies are removed for p = 2 and p = 5 in a very efficient way, but for
p = 8 it is not yet very satisfactory, and it would be recommended to increase the size
of the blocks. We also analyze the eigenvalues of the two-grid operator based on the
overlapping multiplicative Schwarz smoothers. In Figure 7 we can see for a fixed spline
degree, p = 8, that the eigenvalues become smaller when the size of the blocks within
the Schwarz iteration gets larger. For an arbitrary spline degree p, this local Fourier
analysis gives us the asymptotic convergence rates of the multigrid method based
on the different multiplicative Schwarz smoothers. Thus, this information, together
with the computational cost of each relaxation procedure, can be used to justify the
proposed strategy of varying the block-size within the smoother for different values
of p.
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(a) Three-point Schwarz (b) Five-point Schwarz

Fig. 6. Symbol of the smoothing operator corresponding to (a) the three-point and (b) the
five-point multiplicative Schwarz smoothers, for three different spline degrees p = 2, 5, 8.
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(a) Three-point Schwarz (b) Five-point Schwarz (c) Seven-point Schwarz

Fig. 7. Distribution of the eigenvalues of the two-grid method based on the three different
overlapping multiplicative Schwarz smoothers considered, when applied to p = 8.

4.3. Local Fourier analysis results. In order to demonstrate the utility of
the described LFA, next we show the good agreement between the convergence fac-
tors predicted by the LFA and the asymptotic convergence factors experimentally
obtained by the multigrid method. For this purpose, we consider the multigrid com-
ponents described in section 3, that is, the canonical spline embedding operator as the
prolongation operator Ih2h and its adjoint for the restriction I2h

h , a Galerkin approx-
imation on the coarse grids, and for the smoother Sh we will consider Gauss–Seidel
iteration as well as the multiplicative Schwarz smoothers previously explained.

One-dimensional case. In Table 1 we provide the smoothing (ρ1g), two-grid
(ρ2g) and three-grid (ρV3g) convergence factors obtained from LFA, considering one
smoothing step of a Gauss–Seidel relaxation, together with the asymptotic conver-
gence factors provided by the W (1, 0)- and V (1, 0)-cycle multigrid codes (ρWh and ρVh ,
respectively). We can observe a perfect match between the experimental factors and
those predicted by LFA for both W- and V-cycles.

We also perform the analysis presented in section 4.2 for the multiplicative Schwarz
smoothers. In Table 2, we show the smoothing and three-grid convergence factors pre-
dicted by the analysis and the experimentally obtained asymptotic convergence factors
of a V -cycle multigrid with one pre- and no postsmoothing steps. These results are
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Table 1
One-dimensional case: smoothing (ρ1g), two-grid (ρ2g), and three-grid (ρV3g) convergence fac-

tors predicted by LFA together with the asymptotic convergence factors provided by the W(1,0) and
V(1,0) cycle multigrid codes (ρWh and ρVh , respectively) for different spline degrees p.

Gauss–Seidel

ρ1g ρ2g ρWh ρV3g ρVh
p = 2 0.31 0.19 0.19 0.19 0.19
p = 3 0.26 0.22 0.22 0.22 0.22
p = 4 0.38 0.38 0.38 0.38 0.38
p = 5 0.62 0.62 0.62 0.62 0.62
p = 6 0.79 0.79 0.80 0.79 0.80
p = 7 0.89 0.89 0.90 0.89 0.90
p = 8 0.99 0.99 0.96 0.99 0.96

Table 2
One-dimensional case: smoothing (ρ1g) and three-grid (ρV3g) convergence factors predicted by

LFA together with the asymptotic convergence factors provided by the V(1,0)-cycle multigrid code
(ρVh ) for different spline degrees p.

3p Schwarz 5p Schwarz 7p Schwarz

ρ1g ρV3g ρVh ρ1g ρV3g ρVh ρ1g ρV3g ρVh
p = 2 0.176 0.127 0.127 0.119 0.088 0.087 0.089 0.065 0.065
p = 3 0.156 0.114 0.113 0.112 0.086 0.086 0.086 0.066 0.066
p = 4 0.146 0.127 0.127 0.104 0.084 0.084 0.082 0.067 0.067
p = 5 0.209 0.209 0.211 0.101 0.095 0.095 0.078 0.069 0.069
p = 6 0.389 0.389 0.389 0.147 0.147 0.147 0.077 0.077 0.077
p = 7 0.564 0.564 0.564 0.279 0.279 0.276 0.119 0.119 0.121
p = 8 0.712 0.712 0.712 0.424 0.424 0.426 0.221 0.221 0.224

shown for the three considered multiplicative Schwarz smoothers (three-, five-, and
seven-point approaches) and for different spline degrees from p = 2 to p = 8. We
consider V -cycles because we have seen that their convergence rates are as those
provided by W -cycles. We observe in the table that the smoothing ability of the
proposed three-point multiplicative Schwarz relaxation deteriorates when p becomes
larger. This affects the three-grid convergence factor that also gets worse, showing the
necessity of considering multiplicative Schwarz smoothers coupling more than three
points.

Two-dimensional case. We next provide the LFA results for the two-dimensional
problem. In Table 3, the three-grid convergence factors predicted by LFA are shown
together with the corresponding asymptotic convergence factors calculated by using
the proposed V(1,0) multigrid method. A lexicographic Gauss–Seidel smoother and
the multiplicative Schwarz relaxations with blocks of 9, 25, and 49 unknowns (9p
Schwarz, 25p Schwarz, and 49p Schwarz, respectively) are considered. The results are
presented again for different spline degrees ranging from p = 2 to p = 8. The good
match between the estimates predicted by LFA and the real asymptotic convergence
factors is shown in the table. It is also observed that the bad behavior of the multigrid
based on the Gauss–Seidel smoother, which was seen in the one-dimensional results,
is even more remarkable in this two-dimensional case. Finally, it can be seen that,
given a spline degree p, a multiplicative Schwarz smoother which provides a multigrid
method with an efficient performance can be found.

We have demonstrated that the LFA is a very useful tool to obtain information
about the performance of multigrid for IGA, since it predicts very accurately the
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Table 3
Two-dimensional case: three-grid (ρV3g) convergence factors predicted by LFA together with the

asymptotic convergence factors provided by the V(1,0)-cycle multigrid code (ρVh ) for different spline
degrees p.

Gauss–Seidel 9p Schwarz 25p Schwarz 49p Schwarz

ρV3g ρVh ρV3g ρVh ρV3g ρVh ρV3g ρVh
p = 2 0.510 0.510 0.099 0.099 0.067 0.066 0.050 0.050
p = 3 0.827 0.830 0.212 0.214 0.065 0.067 0.052 0.051
p = 4 0.954 0.955 0.452 0.455 0.127 0.145 0.051 0.053
p = 5 0.990 0.990 0.701 0.703 0.260 0.262 0.098 0.119
p = 6 0.999 0.999 0.870 0.872 0.447 0.440 0.190 0.165
p = 7 0.999 0.999 0.947 0.955 0.650 0.657 0.317 0.325
p = 8 0.999 0.999 0.985 0.982 0.816 0.807 0.473 0.440

convergence of the method. This is very interesting since for a fixed spline degree p,
we can choose the appropriate number of points in the blocks to construct an efficient
multiplicative Schwarz smoother. Of course, the computational cost of the method
should be taken into account for this task.

5. Choice of the smoothing strategy. This section is devoted to the choice
of the block-size of the multiplicative Schwarz smoother for a given spline degree p.
In order to choose the most efficient smoothing strategy for each case, we consider
the computational cost of the considered relaxations, which has been described at the
end of section 3, where we provided an estimate of the computational complexity per
smoothing step based on the block-size of the smoothers, together with the conver-
gence factors predicted by the local Fourier analysis in the previous section. By using
such predicted asymptotic convergence factors ρh, we can estimate the number of it-
erations nit necessary to reduce the initial residual in a factor of 10−β . In particular,
we have that

(ρh)nit ≤ 10−β ,(10)

which gives rise to the following condition for the number of iterations:

nit ≥ −
β

log10 ρh
.

This formula together with the computational cost per iteration of each smoother
allows us to find which is the relaxation procedure most efficient for each spline degree
p. After simple calculations, by roughly counting the number of operations needed for
each of the considered smoothers to reduce the initial residual in a factor of 10−8 (that
is β = 8 in (10)), we obtain the following conclusion: in the one-dimensional case,
the three-point multiplicative Schwarz smoother has to be used when p = 2, 3, 4, the
five-point multiplicative Schwarz relaxation is appropriate when p = 5, 6, and finally
the seven-point multiplicative Schwarz smoother is chosen if p = 7, 8. Notice that
the computations performed to estimate the number of iterations use the asymptotic
convergence factor predicted by LFA. Analogously, by following the same procedure,
we can state the smoothing strategy for the two-dimensional case: the nine-point
multiplicative Schwarz iteration is preferred when p = 2, 3, 4, the 25-point multiplica-
tive Schwarz relaxation is chosen if p = 5, 6, and the 49-point multiplicative Schwarz
smoother is appropriate when p = 7, 8. This same procedure can be systematically
applied to choose the appropriate block-size of a multiplicative Schwarz smoother for
a given spline degree p.
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Fig. 8. Convergence rates of the multigrid method based on overlapping multiplicative Schwarz
smoothers for the three considered Schwarz relaxations and their colored counterparts and for spline
degrees p = 2, . . . , 8.

Based on the chosen strategy, we can observe that we have roughly that n ≈ p.
Therefore, the computational cost of the chosen relaxation is O(NDOF p

2d). Although
the computational complexity is not optimal, it will be seen in the numerical experi-
ments that our method requires a small number of iterations for achieving the desired
convergence and that it is robust with respect to the spline degree, the mesh size, the
dimension of the problem, and the geometry of the domain. These features, together
with its ease of implementation, make this method a good alternative for solving IGA
discretizations.

Notice that the different blocks within the multiplicative Schwarz smoothers can
also be visited in different orderings; for instance, they can also be treated with
some patterning scheme, yielding a multicolored version of these relaxation schemes.
This type of approach usually provides better convergence. In our case, we have
done a comparison of the convergence rates of the considered multiplicative Schwarz
smoothers and their colored counterparts. In particular, we have considered a three-
color version of these relaxation procedures.

In Figure 8, we compare the convergence factors of the lexicographic and colored
multiplicative Schwarz smoothers for the one-dimensional case. By using dotted lines,
we show the convergence rates provided by the proposed multigrid method based on
the lexicographic three-, five-, and seven-point multiplicative Schwarz smoothers, for
p = 2, . . . , 8. By using continuous lines, we also display the asymptotic convergence
factors provided by a multigrid based on V (1, 0)-cycles and the colored versions of
the considered three-, five-, and seven-point multiplicative Schwarz smoothers. We
can observe that the qualitative behavior of the method is as in the case for the
noncolored smoothers, but the convergence rates are much better. Taking this into
account, we can improve the smoothing strategy previously chosen by considering
the colored counterparts of the selected relaxations. Notice that, from Figure 8, it is
observed that the convergence rates provided with the colored multiplicative Schwarz
smoothers are five times smaller than those provided with the lexicographic version
of the smoothers for the spline degrees for which they are chosen.

6. Numerical results. In this section, we consider three different numerical
experiments to illustrate the robustness and efficiency of the proposed multigrid
method based on multiplicative Schwarz smoothers. First, we will solve both one-
and two-dimensional problems on the parametric space. After that, we will deal with
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a two-dimensional problem on a nontrivial computational domain. For the first two
numerical experiments we choose B-splines as basis functions, whereas for the third
numerical experiment NURBS are used because these functions can exactly describe
the geometry for the considered domain.

Since the results obtained by the three-grid Fourier analysis in section 4 demon-
strated that V-cycles provide similar convergence as W-cycles, the former are chosen
because they have a lower computational cost and therefore a more efficient multigrid
method is obtained. Moreover, one smoothing step is considered in all the numerical
experiments, in particular V(1,0)-cycles are used. In all the cases the initial guess is
taken as a random vector, and the stopping criterion for the multigrid solver is set
to reduce the initial residual by a factor of 10−8. All the methods have been imple-
mented in our in-house Fortran code, and the numerical computations were carried
out on a MacBook Pro with a Core i5 with 2.7 GHz and 8 GB RAM, running OS X
10.10 (Yosemite). Regarding the presented CPU times, we want to remark that all
of them include the setup phase in which the LU -factorization for solving the small
dense systems within the relaxation is computed. Notice that for the experiments
on the parametric domain such factorization is the same for most degrees of free-
dom, whereas for the last experiment, where a nontrivial geometry is considered, this
factorization has to be computed for each grid-point.

6.1. One-dimensional example on the parametric domain. In the first
numerical experiment we consider the following two-point boundary value problem:{

−u′′(x) = π2 sin(πx), x ∈ (0, 1),
u(0) = u(1) = 0.

We discretize this problem by using an equidistant knot span and maximum continuity
splines for different degrees ranging from p = 2 until p = 8. First, we compare the
performance of the multigrid method based on different smoothers: a standard Gauss–
Seidel and the considered multiplicative Schwarz relaxations with both lexicographic
and colored orderings. With this purpose, we fix the grid-size to h = 2−18. The
comparison is done in Table 4, where the number of V(1,0)-multigrid iterations and
the CPU times necessary to reduce the initial residual in a factor of 10−8 are shown
for different spline degrees for the considered approaches. We have marked in bold
the most efficient strategy for each spline degree, and it is observed that it matches
the strategy chosen in section 5. Thus, we consider colored multiplicative Schwarz
smoothers with blocks composed of three points for the cases p = 2, 3, 4, five points
for p = 5, 6, and seven points for p = 7, 8.

The next step is to see the scalability of the chosen strategy with respect to h
and p. We apply the proposed V (1, 0) multigrid cycle based on the colored multi-
plicative Schwarz smoother for solving the linear system. Table 5 shows the number
of iterations needed to reduce the initial residual by a factor of 10−8 for several mesh
sizes h = 2−` with ` = 16, . . . , 20 and different spline degrees p = 2, . . . , 8. We also
report the computational time (in seconds) needed for solving the linear system by
the proposed multigrid method. We observe that our approach shows an excellent
convergence with respect to the mesh refinement for all the polynomial orders. But
overall, we would like to note the robustness of the method with respect to the spline
degree. In all cases, only four or five V (1, 0)-cycles are needed to reach the stopping
criterium, independently of the mesh size and the polynomial order. Regarding the
computational cost, we observe a very good scaling, not only with respect to h but
also with respect to p.
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Table 4
One-dimensional test problem. Number of V (1, 0) multigrid iterations (it) and computational

time (cpu) necessary to reduce the initial residual in a factor of 10−8, for different values of the
spline degree p, using the Gauss–Seidel (GS) smoother or the multiplicative Schwarz relaxations
considered here: three-point (3p-Sch), five-point (5p-Sch), seven-point (7p-Sch), colored three-point
(c-3p-Sch), colored five-point (c-5p-Sch), and colored seven-point (c-7p-Sch) multiplicative Schwarz
smoothers.

GS 3p-Sch c-3p-Sch 5p-Sch c-5p-Sch 7p-Sch c-7p-Sch
p it cpu it cpu it cpu it cpu it cpu it cpu it cpu
2 10 0.28 9 0.36 5 0.22 7 0.43 5 0.32 7 0.62 4 0.36
3 10 0.33 7 0.33 5 0.25 7 0.49 4 0.28 6 0.58 4 0.40
4 16 0.56 8 0.41 5 0.27 7 0.52 4 0.32 6 0.64 4 0.44
5 29 1.24 10 0.55 8 0.48 7 0.57 4 0.35 6 0.71 4 0.47
6 55 2.29 14 0.84 12 0.71 7 0.63 5 0.45 6 0.83 4 0.52
7 106 4.98 20 1.24 19 1.20 10 0.96 6 0.59 6 0.79 4 0.53
8 201 10.44 31 2.05 38 2.52 13 1.26 9 0.88 8 1.15 5 0.68

Table 5
One-dimensional test problem. Number of V (1, 0) multigrid iterations (it) and computational

time (cpu) necessary to reduce the initial residual in a factor of 10−8, for different grid-sizes h and
for different values of the spline degree p, using the most appropriate colored multiplicative Schwarz
smoother for each p.

Color 3p Schwarz Color 5p Schwarz Color 7p Schwarz
p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

` it cpu it cpu it cpu it cpu it cpu it cpu it cpu
16 5 0.07 5 0.07 5 0.08 4 0.11 5 0.13 4 0.15 5 0.19
17 5 0.13 5 0.15 5 0.15 4 0.18 5 0.24 4 0.28 5 0.36
18 5 0.22 5 0.25 5 0.27 4 0.35 5 0.45 4 0.53 5 0.68
19 5 0.43 5 0.47 5 0.51 4 0.66 5 0.88 4 1.07 5 1.35
20 5 0.82 5 0.91 5 0.99 4 1.28 5 1.70 4 2.08 5 2.69

6.2. Two-dimensional example on the parametric domain. We now test
the performance of the geometric multigrid solver based on overlapping multiplicative
Schwarz smoothers on a two-dimensional problem defined on the parametric domain
Ω = (0, 1)2. More concretely, we consider the problem,{

−∆u = 2π2 sin(πx) sin(πy), (x, y) ∈ Ω = (0, 1)2,
u(x, y) = 0, (x, y) on ∂Ω.

Since the problem is solved in the parametric domain, we choose the basis functions
as B-splines. Similar to the one-dimensional case, the performance of the geometric
multigrid solver based on classical smoothers like Gauss–Seidel iteration is very poor.
This can be seen in Table 6, where the behavior of the multigrid method based on
different smoothers—Gauss–Seidel and lexicographic/colored multiplicative Schwarz
relaxations—is compared. For a mesh of size 512 × 512, we display the number
of V(1,0)-multigrid iterations together with the CPU times necessary to reduce the
initial residual in a factor of 10−8. Again, the bad behavior of the Gauss–Seidel
based multigrid method due to the presence of many small eigenvalues associated
with oscillatory components of the error is clearly observed. There are some cases,
indicated with the symbol −, for which more than 500 iterations would be needed
for convergence. We also notice that the optimal strategy, in bold letters, coincides
with that proposed in section 5. In particular, we choose the colored multiplicative
Schwarz relaxations with blocks of size 3 × 3 for the cases p = 2, 3, 4, blocks of size
5 × 5 for the cases p = 5, 6, and blocks of size 7 × 7 for splines degree p = 7, 8. We
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Table 6
Two-dimensional test problem. Number of V (1, 0) multigrid iterations (it) and computational

time (cpu) necessary to reduce the initial residual in a factor of 10−8, for different values of the
spline degree p, using the Gauss–Seidel (GS) smoother or the multiplicative Schwarz relaxations
considered here: three-point (9p-Sch), five-point (25p-Sch), seven-point (49p-Sch), colored three-
point (c-9p-Sch), colored five-point (c-25p-Sch), and colored seven-point (c-49p-Sch) multiplicative
Schwarz smoothers.

GS 9p-Sch c-9p-Sch 25p-Sch c-25p-Sch 49p-Sch c-49p-Sch
p it cpu it cpu it cpu it cpu it cpu it cpu it cpu
2 20 1.10 8 1.29 4 0.68 7 4.89 4 2.88 6 14.21 3 7.46
3 57 4.90 8 2.13 4 0.99 6 5.60 4 4.02 6 17.80 3 9.30
4 166 21.04 14 4.66 7 2.40 7 8.38 4 5.08 6 22.40 4 15.56
5 492 96.03 19 17.26 17 10.40 9 17.83 4 6.09 6 39.96 3 14.69
6 − 31 21.53 40 28.40 11 20.01 5 9.33 7 39.90 3 16.06
7 − 60 48.04 112 98.70 15 34.32 9 21.80 9 60.44 3 17.15
8 − 88 105.62 254 310.55 22 71.19 15 48.87 11 88.17 4 26.01

Table 7
Two-dimensional test problem. Number of V (1, 0) multigrid iterations (it) and computational

time (cpu) necessary to reduce the initial residual in a factor of 10−8, for different grid-sizes and
for different values of the spline degree p, using the most appropriate colored multiplicative Schwarz
smoother for each p.

Color 9p Schwarz Color 25p Schwarz Color 49p Schwarz
p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

Grid it cpu it cpu it cpu it cpu it cpu it cpu it cpu

1282 4 0.06 4 0.10 7 0.22 4 0.62 5 0.99 3 2.22 4 3.35
2562 4 0.21 4 0.29 7 0.69 4 1.40 5 2.86 3 6.03 4 9.24
5122 4 0.68 4 0.99 7 2.40 4 6.09 5 9.33 3 17.15 4 26.01
10242 4 2.60 4 3.80 7 9.13 3 16.49 5 33.05 3 53.69 4 80.74

want to notice that, although the computational cost analysis done for the choice of
the smoothing strategy stated that the noncolored 49-point smoother was preferred
to the noncolored 25-point relaxation for p = 7, 8, the CPU times in Table 6 say the
contrary due to a remarkable reduction of the convergence rate of the method in the
first iterations. Due to this, such convergence rate is much smaller than that predicted
by the LFA and the real number of iterations is much lower than the one considered
for the choice of the strategy in section 5. We want to remark, however, that this
occurs just in exceptional cases and for most of the times the provided CPU times
support the relaxation choice made in the previous section.

We now apply the proposed strategy for different grids with mesh sizes from
128 × 128 to 1024 × 1024 and various spline degrees ranging from p = 2 to p = 8
in order to show the good scalability of the solver. Again, we use V -cycles with one
presmoothing step and no postsmoothing steps. The number of iterations needed to
reduce the initial residual by a factor of 10−8 together with the computational time
(in seconds) are given in Table 7. We observe that the iteration numbers are robust
with respect to both the size of the grid h and the spline degree p. Moreover, we
see that the number of iterations is similar to that reported in the one-dimensional
case. We emphasize that a small number of V (1, 0)-cycles are needed to reach the
stopping criterium, independently of h and p. Just like in the one-dimensional case,
we can conclude that the multigrid method based on an appropriate multiplicative
Schwarz smoother provides an efficient and robust solver for B-spline isogeometric
discretizations.D
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6.3. Quarter annulus. The last experiment demonstrates the efficiency and
robustness of the proposed multigrid method to deal with a nontrivial geometry. We
take as the domain the quarter of an annulus,

Ω = {(x, y) ∈ R2 | r2 ≤ x2 + y2 ≤ R2, x, y ≥ 0},
which is sketched in Figure 9. We consider the solution of the Poisson problem in
such a domain with homogeneous Dirichlet boundary conditions{

−∆u = f(x, y), (x, y) ∈ Ω,
u(x, y) = 0, (x, y) on ∂Ω,

where f(x, y) is such that the exact solution is

u(x, y) = sin(πx) sin(πy)
(
x2 + y2 − r2

) (
x2 + y2 −R2

)
.

The geometry of the computational domain is described exactly by quadratic C1

NURBS, and we choose in our experiments r = 0.3 and R = 0.5. To discretize this
problem, we use NURBS of degree p = 2, . . . , 8 with maximal smoothness. We solve
the corresponding linear systems using V (1, 0)-cycles. If the Gauss–Seidel smoother
is considered, the bad behavior of the multigrid method reported in the previous
experiment is also observed here. More concretely, for p = 2 around 50 iterations
are required to achieve the desired convergence, about 70 iterations are needed when
p = 3, and for p ≥ 4 the resulting number of iterations is bigger than 200. We consider
then the colored multiplicative Schwarz smoother described in section 5. The size of
the blocks of the Schwarz smoother depends on p, and they are chosen following the
same strategy as in the previous experiment. The numbers of iterations and CPU
times needed to reach the stopping criterion, for various degrees p and for different
mesh sizes, are reported in Table 8. We observe an excellent performance, obtaining

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

!

Fig. 9. Computational domain for the Poisson problem on a quarter of an annulus.

Table 8
Quarter annulus problem. Number of V (1, 0) multigrid iterations (it) and computational time

(cpu) necessary to reduce the initial residual in a factor of 10−8, for different grid-sizes and for
different values of the spline degree p, using the most appropriate colored multiplicative Schwarz
smoother for each p.

Color 9p Schwarz Color 25p Schwarz Color 49p Schwarz
p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

Grid it cpu it cpu it cpu it cpu it cpu it cpu it cpu

322 4 0.02 4 0.02 8 0.05 4 0.13 5 0.20 3 0.65 4 0.72
642 4 0.03 4 0.04 7 0.08 4 0.30 5 0.46 3 1.28 5 2.15
1282 4 0.07 4 0.10 8 0.25 4 0.96 6 1.42 3 3.70 5 7.01
2562 4 0.20 4 0.30 7 0.74 4 3.44 6 5.01 3 13.13 5 23.75D
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results similar to those of the example with the parametric domain. We can conclude
that the proposed solver is robust with respect to this geometry transformation, having
a great potential for solving problems in more complicated multipatch geometries,
which is the subject of future research.

7. Conclusions. An efficient and robust geometric multigrid method, based on
overlapping multiplicative Schwarz smoothers, is proposed for IGA. The robustness
of the algorithm with respect to the spline degree is demonstrated through numerical
experiments and an LFA. This analysis is carried out for any spline degree p and an
arbitrary size of the blocks to solve in the relaxation procedure. The key point to
achieve a robust algorithm is the choice of larger blocks within the Schwarz smoother
when the spline degree grows up. Moreover, to improve the convergence rates pro-
vided by the multigrid method, we considered a colored version of the multiplicative
Schwarz smoothers. A simple multigrid V-cycle based on this type of smoother with
one smoothing step results in a robust and efficient algorithm for isogeometric dis-
cretizations.
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