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Isogeometric Analysis (IGA) is a computational technique for the numerical approximation of partial differential 
equations (PDEs). This technique is based on the use of spline-type basis functions, that are able to hold a global 
smoothness and allow to exactly capture a wide set of common geometries. The current rise of this approach 
has encouraged the search of fast solvers for isogeometric discretizations and nowadays this topic is receiving 
a lot of attention. In this framework, a desired property of the solvers is the robustness with respect to both 
the polynomial degree 𝑝 and the mesh size ℎ. For this task, in this paper we propose a two-level method such 
that a discretization of order 𝑝 is considered in the first level whereas the second level consists of a linear or 
quadratic discretization. On the first level, we suggest to apply one single iteration of a multiplicative Schwarz 
method. The choice of the block-size of such an iteration depends on the spline degree 𝑝, and is supported by 
a local Fourier analysis (LFA). At the second level one is free to apply any given strategy to solve the problem 
exactly. However, it is also possible to get an approximation of the solution at this level by using an ℎ-multigrid 
method. The resulting solver is efficient and robust with respect to the spline degree 𝑝. Finally, some numerical 
experiments are given in order to demonstrate the good performance of the proposed solver.
1. Introduction

The IGA technique was firstly introduced by Tom Hughes et al. in 
the seminal paper [1] in order to integrate the finite element method 
(FEM) with the computer aided geometric design. This analysis consists 
of using spline-type basis functions for the representation of the physi-
cal domain, as well as for the numerical approximation of the solution 
of PDEs. These functions are globally smooth providing up to 𝑝−1 con-
tinuity of the solution, where 𝑝 denotes the polynomial degree.

Given that the isogeometric discretizations of PDEs yield stiffness 
matrices whose number of non-zero entries per row grows as 𝑝 is in-
creased, the search of a robust solver with respect to the spline degree 
𝑝 is not an easy task. However, it is of great interest to obtain effi-
ciently the solution of isogeometric discretizations when high spline 
degrees are considered. Firstly, in [2,3] a study of the computational 
efficiency of direct and iterative solvers for IGA, respectively, was per-
formed, and since then, the design of iterative solvers for isogeometric 
discretizations has attracted a lot of attention. For example, a multilevel 
BPX-preconditioner was developed in [4] for isogeometric analysis. 
Beirão da Veiga et al. analyzed overlapping Schwarz methods for IGA 
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in [5], whereas in [6] they studied BDDC preconditioners by introduc-
ing appropriate discrete norms. Algebraic multilevel iteration (AMLI) 
methods were applied for the isogeometric discretization of scalar sec-
ond order elliptic problems in [7], and preconditioners based on fast 
solvers for the Sylvester equation were proposed in [8]. In the frame-
work of multigrid techniques, different types of smoothers have been 
proposed to avoid the troubles encountered by standard relaxation pro-
cedures. In [9] a preconditioned Krylov smoother at the finest level 
was considered and in [10] the authors proposed a multigrid solver 
based on a mass matrix smoother. In both cases, an increase in the 
number of smoothing iterations was needed in order to obtain robust-
ness with respect to the spline degree. To avoid the lack of robustness 
of the mass smoother, in [11] a new version of such a relaxation in-
cluding a boundary correction was presented. However, the extension 
of that version to three dimensions was not clear, and therefore, in 
[12], the authors proposed a multigrid smoother based on an additive 
subspace correction technique. In such approach, a different smoother 
is applied to each of the subspaces: in the regular interior subspace a 
mass smoother is considered, whereas in the other subspaces they pro-
posed to use relaxations which exploit the particular structure of the 
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subspaces. Also 𝑝-multigrid methods have been applied for solving IGA. 
In [13] the authors apply a 𝑝-multigrid method based on an ILUT (In-
complete LU factorization based on a dual Threshold strategy) smoother 
and compare this approach with ℎ-multigrid methods based on the same 
smoother. Recently, we have proposed in [14] a very simple robust and 
efficient geometric multigrid algorithm based on a 𝑉 (1, 0)-cycle with 
overlapping multiplicative Schwarz-type methods as smoothers for solv-
ing IGA. The key for the robustness of the algorithm with respect to the 
spline degree is the choice of larger blocks within the Schwarz smoother 
when the spline degree grows up.

The main contribution of this work is to propose a robust two-level 
method for solving a target isogeometric discretizacion of order 𝑝, such 
that a linear/quadratic discretization is considered at the second level 
depending on the parametrization of the physical domain. At the first 
level, we apply only one iteration of a suitable overlapping multiplica-
tive Schwarz method. Then, a restriction operator is constructed via 
projection of the B-spline basis functions between the corresponding 
approximation spline spaces of the target degree 𝑝 and 𝑝 = 1 or 𝑝 = 2. 
At this point, the prolongation operator is defined as the adjoint of the 
restriction operator. For solving exactly the system arising on the sec-
ond level there exist well-known solution techniques. However, one can 
also obtain an approximation of the solution at the second level by us-
ing few steps of an iterative method. In this work, we propose to apply 
an ℎ-multigrid on the coarse level. More concretely, one single iteration 
of a 𝐹 (1, 1)-cycle that uses a red-black Gauss-Seidel smoother provides 
very good results. Moreover, a further improvement of the algorithm 
can be achieved by using a more aggressive coarsening strategy. In ad-
dition to reduce the spline degree from 𝑝 to 1 or 2, we propose to apply 
standard coarsening (from ℎ to 2ℎ) from the first to the second level. 
The proposed two-level algorithm presents certain advantages over the 
geometric multigrid introduced in [14], since it provides identical per-
formance but reducing the computational cost.

The proposed two-level method is theoretically studied by a local 
Fourier analysis. This analysis, introduced by Achi Brandt in [15,16], 
is the main quantitative analysis for the convergence of multilevel al-
gorithms, and results in a very useful tool for the design of this type 
of methods. Moreover, in [17] it has been recently proved that under 
standard assumptions LFA is a rigorous analysis, providing the exact 
asymptotic convergence factors of the method. LFA has been success-
fully applied to isogeometric discretizations in [14] in order to ana-
lyze the convergence of an ℎ-multigrid method based on multiplicative 
Schwarz smoothers. In particular, an analysis for any spline degree 𝑝
and an arbitrary size of the blocks in the smoother is provided in such 
work. Here, such an analysis is used to choose for each spline degree 𝑝
the block-size in the multiplicative Schwarz iteration on the first level 
that provides a robust two-level algorithm. Thus, this analysis theo-
retically supports the convergence of the proposed two-level method. 
Furthermore, LFA can be also performed to analyze the version of the 
algorithm in which we approximate the solution at the second level by 
using an ℎ-multigrid method. In that case, a three-grid local Fourier 
analysis has to be considered in order to take into account the approx-
imation on the second level instead of an exact solve. Finally, again a 
two-grid LFA is applied to support the enhancement of the algorithm 
by considering a standard coarsening strategy between the first and the 
second level.

It is not the first time that a two-level method is proposed for high-
order discretizations. In the framework of discontinuous Galerkin (DG) 
methods, in [18] it was theoretically proved that a suitable additive 
Schwarz method provides uniform convergence with respect to all the 
discretization parameters, i.e. the mesh size, the polynomial order and 
the penalization coefficient appearing in the DG bilinear form. How-
ever, in such a work, the block-size of the appropriate additive Schwarz 
iteration is not provided and here we support its choice by a suitable 
local Fourier analysis.

The rest of the paper is structured as follows: In Section 2 a brief 
introduction to the isogeometric analysis is given. Also, we state here 
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a model problem and the basics of B-splines and NURBS. Section 3 is 
devoted to the presentation of the proposed two-level method. The al-
gorithm, together with its components, is introduced in Section 3.1; 
the approach in which an ℎ-multigrid is applied on the coarse level is 
explained in Section 3.2; and finally an improvement of the two-level 
method based on an aggressive coarsening is presented in Section 3.3. 
In Section 4, we develop the corresponding LFA in order to support 
the design of our solver. We perform the LFA for the three versions 
of the method and we present the corresponding results. Section 5
presents a comparison between the proposed two-level algorithm and 
the ℎ-multigrid method introduced in [14]. In Section 6 three numeri-
cal experiments show the good performance of the proposed two-level 
method. Finally, Section 7 summarizes the main results of this work and 
draws some conclusions.

2. Isogeometric analysis

Let us consider the Poisson equation in a 𝑑-dimensional domain Ω
with homogeneous Dirichlet boundary conditions:{

−Δ𝑢 = 𝑓, in Ω,
𝑢 = 0, on 𝜕Ω. (1)

In (1), the physical domain Ω is the image of the so-called parametric 
domain Ω̂ = (0, 1)𝑑 under a geometrical mapping 𝐅 ∶ Ω̂→Ω.
The variational formulation of our model problem (1) reads as follows: 
Find 𝑢 ∈𝐻1

0 (Ω) such that 𝑎(𝑢, 𝑣) = (𝑓, 𝑣), ∀𝑣 ∈𝐻1
0 (Ω), where

𝑎(𝑢, 𝑣) = ∫
Ω

∇𝑢 ⋅∇𝑣d𝑥, and (𝑓, 𝑣) = ∫
Ω

𝑓𝑣d𝑥.

The Galerkin approximation of the variational problem is given by: Find 
𝑢ℎ ∈ 𝑉ℎ such that

𝑎(𝑢ℎ, 𝑣ℎ) = (𝑓, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ, (2)

where 𝑉ℎ is a finite dimensional space. In the isogeometric framework, 
𝑉ℎ is a given space of splines whose global smoothness might vary de-
pending on the refinement strategy [1]. In this work, we will consider 
spline spaces of degree 𝑝 holding maximum continuity, that is, 𝑝−1
regularity. These spaces are given by

𝑝
ℎ
(Ω) = span{𝑁𝑝

𝑖
, 𝑖 = 1,… , 𝑛

𝑝

ℎ
}, (3)

where 𝑁𝑝
𝑖
= �̂�𝑝

𝑖
◦𝐅−1 are the 𝑑-variate B-spline/NURBS basis functions 

defined on Ω, given in terms of the basis functions on the parametric 
domain �̂�𝑝

𝑖
, which will be described below, and the corresponding ge-

ometrical mapping 𝐅 previously mentioned, and 𝑛𝑝
ℎ

is the number of 
these basis functions. The solution of (2), which we will denote as 𝑢𝑝

ℎ
to 

emphasize the dependence on the spline degree 𝑝, can be expanded as 
a linear combination of the considered spline basis functions. That is,

𝑢
𝑝

ℎ
=

𝑛
𝑝
ℎ∑

𝑖=1
𝑢
𝑝
𝑖
𝑁
𝑝
𝑖
,

where the coefficients 𝑢𝑝
𝑖

are the control points associated to the numer-
ical solution. These coefficients can be computed by solving the linear 
system 𝐴𝑝𝑢𝑝 = 𝑏𝑝, where the stiffness matrix is given by 𝐴𝑝 = (𝑎𝑖,𝑗 ) =

(𝑎(𝑁𝑝
𝑗
, 𝑁𝑝

𝑖
))
𝑛
𝑝
ℎ

𝑖,𝑗=1 and the right hand side is 𝑏𝑝 = (𝑓, 𝑁𝑝
𝑖
)
𝑛
𝑝
ℎ

𝑖=1.

2.1. B-spline basis functions

Isogeometric analysis is based on B-spline basis functions that are 
constructed parametrically. Let us recall that the parametric domain is 
taken as Ω̂ = (0, 1)𝑑 , where 𝑑 is the number of parametric directions. 
Then, a non-decreasing sequence of real numbers called knot vector is 
required to determine this parametrization on each direction. Thus, let 
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us start by considering an open knot vector Ξ𝑝 for the one-dimensional 
case

Ξ𝑝 = {𝜉1 =…= 𝜉𝑝+1 = 0 < 𝜉𝑝+2 <… 𝜉𝑝+𝑚 < 1 = 𝜉𝑝+𝑚+1 =…= 𝜉2𝑝+𝑚+1}.

For the case 𝑝 = 0, the univariate piecewise constant splines are step 
functions with support on the corresponding knot span. That is, for 𝑖 =
1, … , 𝑚,

�̂�0
𝑖 (𝜉) =

{
1 if 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1,
0 otherwise.

(4)

Then, for every pair (𝑘, 𝑖) such that 1 ≤ 𝑘 ≤ 𝑝, 1 ≤ 𝑖 ≤ 𝑚 + 2𝑝 − 𝑘, the 
basis functions �̂�𝑘

𝑖
∶ [0, 1] →ℝ are given recursively by the Cox-de-Boor 

formula:

�̂�𝑘
𝑖 (𝜉) =

𝜉 − 𝜉𝑖
𝜉𝑖+𝑘 − 𝜉𝑖

�̂�𝑘−1
𝑖 (𝜉) +

𝜉𝑖+𝑘+1 − 𝜉
𝜉𝑖+𝑘+1 − 𝜉𝑖+1

�̂�𝑘−1
𝑖+1 (𝜉), (5)

in which fractions of the form 0∕0 are considered as zero. For more de-
tails, we refer to the reader to [19].
For higher spatial dimensions, that is 𝑑 > 1, both parameter space and 
basis functions are built by tensorization. For instance, in the two-
dimensional case, that we consider in this work, the B-spline basis 
functions are constructed over the tensor product of two knot-vectors

Ξ𝑝 × Ξ𝑝 = {(𝜉, 𝜂), 𝜉 ∈ Ξ𝑝, 𝜂 ∈ Ξ𝑝}.

Note that for the sake of simplicity we are taking the same spline degree 
𝑝 and the same set of knot vector, but this is not restrictive. Hence, a 
bivariate B-spline basis function �̂�𝑝

𝑖,𝑗
is given by means of tensor product 

of two univariate B-spline basis functions:

�̂�
𝑝
𝑖,𝑗
(𝜉, 𝜂) = (�̂�𝑝

𝑖
⊗ �̂�

𝑝
𝑗
)(𝜉, 𝜂) = �̂�𝑝

𝑖
(𝜉)�̂�𝑝

𝑗
(𝜂).

Thus, a B-spline geometrical mapping is defined as an application 
𝐅 ∶ Ω̂→Ω. In the case 𝑑 = 2, this mapping is defined as follows

𝐅(𝜉, 𝜂) =
𝑚+𝑝∑
𝑖=1

𝑚+𝑝∑
𝑗=1

𝐏𝑖,𝑗 �̂�
𝑝
𝑖,𝑗
(𝜉, 𝜂), (6)

where {𝐏𝑖,𝑗}𝑖,𝑗=1,…,𝑚+𝑝 are the control points that determine the geome-
try of the physical domain.

2.2. Non-uniform rational B-spline (NURBS) basis functions

In order to capture a wider set of complex geometries that use to 
appear in practice, we also introduce the so-called non-uniform rational 
B-splines (NURBS). Hence, by using NURBS as basis functions the full 
potential of IGA can be exploited. In order to construct them, a set of 
weights 𝜔1,… ,𝜔𝑚+𝑝 is also needed. Then, the 𝑖-th univariate NURBS 
basis function of polynomial degree 𝑝 is given by

𝑅
𝑝
𝑖
(𝜉) =

𝜔𝑖�̂�
𝑝
𝑖
(𝜉)∑𝑚+𝑝

𝑗=1 𝜔𝑗�̂�
𝑝
𝑗
(𝜉)
.

In general, the two-dimensional NURBS basis functions cannot be con-
structed straightforwardly by tensorization since each weight is asso-
ciated to each basis function. Hence, for 𝑑 = 2 a net of weights 𝜔𝑖,𝑗 is 
considered and these basis functions are given by

𝑅
𝑝
𝑖,𝑗
(𝜉, 𝜂) =

𝜔𝑖,𝑗�̂�
𝑝
𝑖,𝑗
(𝜉, 𝜂)∑𝑚+𝑝

𝑘,𝑙=1𝜔𝑘,𝑙�̂�
𝑝

𝑘,𝑙
(𝜉, 𝜂)

,

with 𝑖, 𝑗 = 1, … , 𝑚 + 𝑝.
Note that NURBS geometrical mappings are defined as in (6), but 

using 𝑅𝑝 as basis functions.

𝑖,𝑗
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3. Two-level method

In this work, we propose an algebraic two-level method for solv-
ing isogeometric discretizations of an arbitrary polynomial degree in 
an efficient and robust way. This two-level method considers the tar-
get polynomial degree on the fine level whereas the order of the ap-
proximation at the coarse level is as low as possible, dictated by the 
parametrization of the physical domain. In the following, in Section 3.1
we present the proposed two-level algorithm, specifying the compo-
nents of the method. The problem on the coarse level can be exactly 
solved by using the preferred solver of the user, but it also can be ap-
proximated by using a suitable iterative method, for example using one 
iteration of a multigrid cycle as we will present in Section 3.2. This, 
however, is only a choice of the authors but other possibilities can be 
equally valid. Finally, in Section 3.3 we also show that a more aggres-
sive coarse level can be used, improving the efficiency of the method.

3.1. Two-level algorithm

As previously mentioned, in this section we explain the proposed 
algorithm and we introduce its main components. Recall that this two-
level method solves an isogeometric discretization with a target polyno-
mial degree on the fine grid by using a linear/quadratic discretization 
on the coarse level. Let us denote with 𝑝 and 𝑝𝑙𝑜𝑤 the polynomial or-
ders of the discretization at the fine and coarse level respectively. A 
general two-level algorithm for solving the system 𝐴𝑝𝑢𝑝 = 𝑏𝑝, where 𝐴𝑝
denotes the isogeometric discretization of spline degree 𝑝, consists of 
the following:

1. Apply 𝜈1 steps of a suitable iterative method 𝑆𝑝 to the initial ap-
proximation 𝑢0𝑝 on the fine level:

𝑢𝑘𝑝 = 𝑢
𝑘−1
𝑝 +𝑆𝑝(𝑏𝑝 −𝐴𝑝𝑢𝑘−1𝑝 ), 𝑘 = 1,… , 𝜈1.

2. Compute the defect on the fine level 𝑑𝑝 = 𝑏𝑝 −𝐴𝑝𝑢
𝜈1
𝑝 and restrict it 

to the coarse level by using the fine-to-coarse transfer operator

𝑑𝑝𝑙𝑜𝑤 = 𝐼𝑝𝑙𝑜𝑤𝑝 𝑑𝑝.

3. Compute the correction 𝑒𝑝𝑙𝑜𝑤 in the coarse level by solving the de-
fect equation

𝐴𝑝𝑙𝑜𝑤𝑒𝑝𝑙𝑜𝑤 = 𝑑𝑝𝑙𝑜𝑤 ,

where 𝐴𝑝𝑙𝑜𝑤 denotes the isogeometric discretization of spline de-
gree 𝑝𝑙𝑜𝑤.

4. Prolongate and update the correction to the fine level by means of 
the coarse-to-fine transfer operator

𝑢
𝜈1
𝑝 = 𝑢𝜈1𝑝 + 𝐼𝑝𝑝𝑙𝑜𝑤𝑒𝑝𝑙𝑜𝑤 .

5. Apply 𝜈2 steps of the same iterative method 𝑆𝑝 to the current ap-
proximation:

𝑢
𝜈1+𝑘
𝑝 = 𝑢𝜈1+𝑘−1𝑝 + 𝑆𝑝(𝑏𝑝 −𝐴𝑝𝑢

𝜈1+𝑘−1
𝑝 ), 𝑘 = 1,… , 𝜈2.

Of course, the choice of the components of the algorithm is very 
important. Hence, let us describe in the following the choice of the 
iterative method applied on the fine level, that we will call smoother, 
and the construction of the inter-grid transfer operators for the proposed 
two-level method.

3.1.1. Smoother
As relaxation procedure on the fine level, we propose the use of 

multiplicative Schwarz methods. These methods are a particular case of 
block-wise iterations which update simultaneously a set of unknowns 
at each time. They are based on a splitting of the grid into blocks 
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that gives rise to local problems. There are many possibilities to con-
struct these blocks. One can allow the blocks to overlap, giving rise 
to the class of overlapping block iterations, where smaller local prob-
lems are solved and combined via an additive or multiplicative Schwarz 
method. In this work, we consider multiplicative Schwarz iterations 
with maximum overlapping. Although this overlapping increases the 
computational cost of the method, it improves the convergence rates 
and thus a fewer number of iterations is required in order to reach 
the stopping criteria. A deep study of the computational cost of these 
smoothers was presented in [14].

More specifically, we can describe the multiplicative Schwarz iter-
ation for solving the system 𝐴𝑝𝑢𝑝 = 𝑏𝑝 of size 𝑛 in the following way. 
Let us denote as 𝐵𝑗𝑝 the subset of unknowns involved in the 𝑗 − 𝑡ℎ block 
of size 𝑛𝑝, that is 𝐵𝑗𝑝 =

{
𝑢𝑘1 ,… , 𝑢𝑘𝑛𝑝

}
where 𝑘𝑖 is the global index of 

the 𝑖-th unknown in the block. In order to construct the matrix to solve 
associated with such a block, that is 𝐴𝐵

𝑗
𝑝

𝑝 , we consider the projection 
operator from the vector of unknowns 𝑢𝑝 to the vector of unknowns in-
volved in the block. This results in a matrix 𝑉

𝐵
𝑗
𝑝

of size (𝑛𝑝 × 𝑛), whose 
𝑖-th row is the 𝑘𝑖-th row of the identity matrix of order 𝑛. Thus, ma-

trix 𝐴𝐵
𝑗
𝑝

𝑝 is obtained as 𝐴𝐵
𝑗
𝑝

𝑝 = 𝑉
𝐵
𝑗
𝑝
𝐴𝑝𝑉

𝑇

𝐵
𝑗
𝑝

, and the iteration matrix of the 

multiplicative Schwarz method can be written as

𝑁𝐵∏
𝑗=1

(
𝐼 − 𝑉 𝑇

𝐵
𝑗
𝑝

(𝐴
𝐵
𝑗
𝑝

𝑝 )−1𝑉
𝐵
𝑗
𝑝
𝐴𝑝

)
,

where 𝑁𝐵 denotes the number of blocks obtained from the splitting of 
the grid, which corresponds to the number of small systems that have to 
be solved in a relaxation step of the multiplicative Schwarz smoother. 
In our particular case of maximum overlapping, 𝑁𝐵 coincides with the 
number of grid-points and every block is related to a grid-point, involv-
ing that grid-point and its neighbours. Given an appropriate 𝑛𝑝 for each 
polynomial degree 𝑝, the size of the blocks is given by 𝑑

√
𝑛𝑝 ×… × 𝑑

√
𝑛𝑝

for the 𝑑-dimensional case. However, in this work we deal with the case 
𝑑 = 2, so square blocks of size √𝑛𝑝×√𝑛𝑝 around each grid point are con-
sidered. More concretely, we will use the nine-, twenty five- and forty 
nine-point multiplicative Schwarz smoothers, depending on the spline 
degree 𝑝.
Our study will be carried out up to 𝑝 = 8. Isogeometric discretizations 
with spline degree larger than 𝑝 = 8, however, can be also solved by con-
sidering the proposed two-level approach based on a Schwarz iteration 
with a big enough number of unknowns within the blocks.

As it will be shown, by applying only one iteration of this smoother 
at the fine level we get a very simple and efficient solver. In order to 
obtain a robust solver with respect to the spline degree 𝑝, the size of the 
blocks will be chosen depending on the order of the discretization. In 
addition, we apply a nine-colour version of the considered Schwarz-type 
smoothers since these counterparts provide, in general, better conver-
gence rates, see [14]. In order to apply the nine-coloured version of 
the smoother, first we split the grid into nine subgrids, each one as-
sociated to a different colour. This splitting can be seen in Fig. 1 (a), 
where each colour is represented by a number from 1 to 9. Then, we 
perform a sweep over the nine subgrids, updating simultaneously the 
unknowns within the blocks centered on the grid-points of the corre-
sponding subgrid, in a lexicographic manner. If the coloured version 
of the 9-point (3 × 3) multiplicative Schwarz iteration is considered, in 
Fig. 1 (b) we illustrate the blocks of unknowns updated within the first 
sweep corresponding to the first colour. Then, we run over the grid-
points associated to the subgrid corresponding to the second, third, . . . , 
and ninth colours. As an example, in Fig. 1 (c), we show the blocks of 
unknowns which are simultaneously updated within the sweep corre-
sponding to the fifth colour.

3.1.2. Transfer operators
Another important point of our two-level method is the construc-

tion of the restriction and prolongation operators. After computing the 
44
Algorithm 1 Two-level algorithm: 𝐮𝟎𝐩 → 𝐮𝟏𝐩.

𝑢1
𝑝
= 𝑢0

𝑝
+ 𝑆𝑝(𝑏𝑝 −𝐴𝑝𝑢0𝑝) Apply one step

of the multiplicative Schwarz method on the fine level.
𝑑𝑝 = 𝑏𝑝 −𝐴𝑝𝑢1𝑝 Compute the defect on the fine level.
𝑑𝑝𝑙𝑜𝑤 = 𝐼𝑝𝑙𝑜𝑤𝑝 𝑑𝑝 Restrict the defect to the coarse level.
𝐴𝑝𝑙𝑜𝑤 𝑒𝑝𝑙𝑜𝑤 = 𝑑𝑝𝑙𝑜𝑤 Compute the correction 𝑒𝑝𝑙𝑜𝑤 in the coarse level

by solving the defect equation.
𝑢1
𝑝
= 𝑢1

𝑝
+ 𝐼𝑝𝑝𝑙𝑜𝑤 𝑒𝑝𝑙𝑜𝑤 Prolongate and update the correction to the fine level.

residual on the fine level, we restrict it to the coarse level by means 
of an 𝐿2 projection among spline spaces. On the fine level, the solu-

tion of (2) is given by 𝑢𝑝
ℎ
=
∑𝑛

𝑝
ℎ

𝑗=1 𝑢
𝑝
𝑗
𝑁
𝑝
𝑗
, where dim𝑉 𝑝

ℎ
= 𝑛

𝑝

ℎ
. Since the 

approximation of 𝑢𝑝
ℎ
∈ 𝑉 𝑝

ℎ
is restricted by means of the restriction op-

erator 𝐼𝑝𝑙𝑜𝑤𝑝 ∶ 𝑉 𝑝

ℎ
→ 𝑉

𝑝𝑙𝑜𝑤
ℎ

to the space 𝑉 𝑝𝑙𝑜𝑤
ℎ

, the resulting function 
𝐼
𝑝𝑙𝑜𝑤
𝑝 𝑢

𝑝

ℎ
can be expanded as a linear combination of the spline basis 

functions of 𝑉 𝑝𝑙𝑜𝑤
ℎ

. Consequently, there exists a vector of coefficients 

𝑢𝑝𝑙𝑜𝑤 = {𝑢𝑝𝑙𝑜𝑤
𝑗

}
𝑛
𝑝𝑙𝑜𝑤
ℎ

𝑗=1 such that

𝐼
𝑝𝑙𝑜𝑤
𝑝 𝑢

𝑝

ℎ
=
𝑛
𝑝𝑙𝑜𝑤
ℎ∑
𝑗=1

𝑢
𝑝𝑙𝑜𝑤
𝑗

𝑁
𝑝𝑙𝑜𝑤
𝑗

. (7)

In order to obtain the relationship among the coefficients 𝑢𝑝 = {𝑢𝑝
𝑗
}
𝑛
𝑝
ℎ

𝑗=1
and 𝑢𝑝𝑙𝑜𝑤 , we test both the approximation on the fine level and its re-

stricted term with every basis function spanning 𝑉 𝑝𝑙𝑜𝑤
ℎ

. Thus, one gets 
the following system of equations:

𝑛
𝑝𝑙𝑜𝑤
ℎ∑
𝑘=1

𝑢
𝑝𝑙𝑜𝑤
𝑘

(
𝑁
𝑝𝑙𝑜𝑤
𝑘

,𝑁
𝑝𝑙𝑜𝑤
𝑖

)
=

𝑛
𝑝
ℎ∑

𝑗=1
𝑢
𝑝
𝑗

(
𝑁
𝑝
𝑗
,𝑁

𝑝𝑙𝑜𝑤
𝑖

)
, ∀𝑖 = 1,… , 𝑛

𝑝𝑙𝑜𝑤
ℎ

. (8)

This system can also be described as follows,

𝑀
𝑝𝑙𝑜𝑤
𝑝𝑙𝑜𝑤

𝑢𝑝𝑙𝑜𝑤 =𝑀𝑝𝑙𝑜𝑤
𝑝 𝑢𝑝,

where

(
𝑀

𝑝𝑙𝑜𝑤
𝑝𝑙𝑜𝑤

)
𝑖,𝑗

= ∫
Ω

𝑁
𝑝𝑙𝑜𝑤
𝑖

𝑁
𝑝𝑙𝑜𝑤
𝑗

d𝑥,
(
𝑀

𝑝𝑙𝑜𝑤
𝑝

)
𝑖,𝑗

= ∫
Ω

𝑁
𝑝𝑙𝑜𝑤
𝑖

𝑁
𝑝
𝑗
d𝑥.

Therefore, the restriction operator is given by 𝐼𝑝𝑙𝑜𝑤𝑝 =
(
𝑀

𝑝𝑙𝑜𝑤
𝑝𝑙𝑜𝑤

)−1
𝑀

𝑝𝑙𝑜𝑤
𝑝 . 

Moreover, the prolongation operator is taken as its adjoint, that is, 
𝐼
𝑝
𝑝𝑙𝑜𝑤

=
(
𝑀

𝑝𝑙𝑜𝑤
𝑝

)𝑇 (
𝑀

𝑝𝑙𝑜𝑤
𝑝𝑙𝑜𝑤

)−𝑇
. At this point, we approximate 

(
𝑀

𝑝𝑙𝑜𝑤
𝑝𝑙𝑜𝑤

)−1
by row-sum lumping in order to avoid the computation of this inverse 
matrix exactly. That is, 

(
𝑀

𝑝𝑙𝑜𝑤
𝑝𝑙𝑜𝑤

)−1
is replaced by a diagonal matrix such 

that its 𝑖-th element in the diagonal is given by 
(∑𝑛

𝑝𝑙𝑜𝑤
ℎ

𝑗=1 𝑀
𝑝𝑙𝑜𝑤
𝑝𝑙𝑜𝑤

(𝑖, 𝑗)
)−1

.

Once introduced the components of the method, one iteration of our 
two-level algorithm is described in Algorithm 1.

Notice that it results in a very simple algorithm since only one single 
iteration of a multiplicative overlapping Schwarz method is applied on 
the fine level.

3.2. Approximation of the coarse level problem

Although there is an open choice for the solver at the coarse level, 
instead of solving exactly the coarse problem, it can also be approxi-
mated by using a suitable iterative method. In this work, we apply one 
𝐹 (1, 1)-cycle that uses a red-black Gauss-Seidel iteration as smoother. 
The multigrid F-cycle is a hybrid algorithm between the cheap V-cycle 
and the expensive W-cycle (see [20]). Our numerical experiments show 
that one iteration of such an ℎ-multigrid method is enough to ensure a 
good convergence rate. This choice will be theoretically supported by a 
suitable local Fourier analysis, which will be explained in Section 4.
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Fig. 1. Coloured version of the 9-point (3 × 3) multiplicative Schwarz iteration. (a) Numbering of the nine colours used within the coloured version of the smoother. 
(b) Blocks of unknowns updated within the sweep corresponding to the first colour. (c) Blocks of unknowns updated within the sweep corresponding to the fifth 
colour.
3.3. Improvement of the algorithm

A further improvement of the algorithm can be achieved by using 
a more aggressive coarsening strategy. More concretely, we can take 
a discretization with 𝑝𝑙𝑜𝑤 and a mesh size 𝐻 = 2ℎ as the coarse level. 
Thus, the computational cost is reduced and the performance of the 
solver is improved without any significant effect on the convergence 
factors. Again, local Fourier analysis is able to theoretically support this 
approach, as we will see in Section 4.

4. Local Fourier analysis

In this section we apply a local Fourier analysis pursuing different 
objectives. First, we use this analysis to theoretically support the pro-
posed two-level algorithm and in particular the choice of the size of the 
blocks for the multiplicative Schwarz iteration depending on the spline 
degree 𝑝. In addition, in order to support the use of the ℎ-multigrid as 
approximation on the coarse level, we apply a three-grid Fourier anal-
ysis, and as it will be shown very similar convergence rates to the case 
of the two-level with an exact solve on the coarse level are obtained. Fi-
nally, again a two-grid LFA is used to support the improvement of the 
algorithm presented in Section 3.3. We restrict our analysis to the case 
𝑑 = 2, but this analysis can be applied to all dimensional cases. Given 
that LFA assumes a regular mesh, uniform and open knot vectors are 
required for the discretization. That is, the internal knots are equally 
spaced.

4.1. Basics of LFA

Local Fourier analysis (LFA) is based on the Fourier transform the-
ory, assuming that any grid function defined on an infinite grid ℎ can 
be decomposed as a “formal” linear combination of complex exponen-
tial functions, 𝜑ℎ(𝜃, 𝐱) = 𝑒𝚤𝜃𝐱∕ℎ with 𝐱 ∈ ℎ and 𝜃 ∈Θ ∶= (−𝜋, 𝜋]2, known 
as Fourier modes. In particular such decomposition of the error func-
tion is considered and LFA studies how the operators involved in the 
multilevel method act on these Fourier components, and in particular 
on the so-called Fourier space  (ℎ) ∶= span{𝜑ℎ(𝜃, 𝐱) | 𝜃 ∈Θ}.

Here, we study the two-level method previously introduced by us-
ing this analysis. With this purpose, we define the error propagation 
operator of the two-level method, 𝑇 𝑝𝑙𝑜𝑤𝑝 , which relates the error in the 
iteration 𝑚 +1, 𝑒𝑚+1, with the error in the previous iteration, 𝑒𝑚, that is,

𝑒𝑚+1 = 𝑇 𝑝𝑙𝑜𝑤𝑝 𝑒𝑚 = (𝐼 − 𝐼𝑝𝑝𝑙𝑜𝑤𝐴
−1
𝑝𝑙𝑜𝑤

𝐼
𝑝𝑙𝑜𝑤
𝑝 𝐴𝑝)𝑆𝑝𝑒𝑚. (9)

In the previous expression, 𝐴𝑝 and 𝐴𝑝𝑙𝑜𝑤 correspond to the IGA discrete 
operators of order 𝑝 and 𝑝𝑙𝑜𝑤, respectively; 𝐼𝑝𝑝 and 𝐼𝑝𝑙𝑜𝑤𝑝 are the inter-
𝑙𝑜𝑤
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grid transfer operators, and 𝑆𝑝 represents the multiplicative Schwarz 
iteration which is applied within the two-level method. It is easy to see 
that the Fourier modes are eigenfunctions of all the operators involved 
in the two-level method. Notice that, in this case, the transfer operators 
between levels do not couple Fourier modes unlike the inter-grid trans-
fer operators within the standard ℎ-multigrid method. Thus, the Fourier 
symbol of the error transfer operator for 𝜃 ∈Θ is given by,

𝑇
𝑝𝑙𝑜𝑤
𝑝 (𝜃) = (𝐼(𝜃) − 𝐼𝑝𝑝𝑙𝑜𝑤 (𝜃)𝐴

−1
𝑝𝑙𝑜𝑤

(𝜃)𝐼𝑝𝑙𝑜𝑤𝑝 (𝜃)𝐴𝑝(𝜃))𝑆𝑝(𝜃),

where 𝐼(𝜃) denotes the symbol of the identity operator, 𝐼𝑝𝑝𝑙𝑜𝑤 (𝜃) and 
𝐼
𝑝𝑙𝑜𝑤
𝑝 (𝜃) denote the Fourier symbols of the prolongation and restriction 

operators, 𝐴𝑝𝑙𝑜𝑤 (𝜃) and 𝐴𝑝(𝜃) are the symbols of the discrete opera-

tors 𝐴𝑝𝑙𝑜𝑤 and 𝐴𝑝 respectively, and 𝑆𝑝(𝜃) denotes the Fourier symbol 
of the smoother 𝑆𝑝 applied to the discretization given on the fine level. 
Thus, in order to compute this expression, the Fourier symbol of the 
discrete operators, inter-grid transfer operators, and smoothers are re-
quired. Since the Fourier modes are eigenfunctions of any discrete op-
erator 𝐴 which can be described by a stencil with coefficients 𝑎𝜅 , 𝜅 ∈ 
(where  is the set of indexes defining the stencil), it is satisfied that 
𝐴𝜑ℎ(𝜃, 𝐱) = 𝐴(𝜃)𝜑ℎ(𝜃, 𝐱), with 𝐴(𝜃) =

∑
𝜅∈

𝑎𝜅𝑒
𝚤𝜃⋅𝜅 being the Fourier sym-

bol of operator 𝐴 (see [21]). In our case, the symbol of the discrete 
operator can be obtained by computing the Hadamard product of the 
stencil of the chosen discretization and the corresponding matrix of 
Fourier modes, and adding up all the elements of the resulting ma-
trix. For instance, for each 𝜃 = (𝜃1, 𝜃2) ∈ Θ, the discrete operator of a 
quadratic B-spline discretization 𝐴2 and the corresponding matrix of 
Fourier modes 𝐹2 are given by

𝐴2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
360

−7
180

−1
12

−7
180

−1
360

−7
180

−13
90

1
30

−13
90

−7
180

−1
12

1
30

11
10

1
30

−1
12

−7
180

−13
90

1
30

−13
90

−7
180

−1
360

−7
180

−1
12

−7
180

−1
360

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐹2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑒−2𝚤𝜃1𝑒−2𝚤𝜃2 𝑒−𝚤𝜃1𝑒−2𝚤𝜃2 𝑒−2𝚤𝜃2 𝑒𝚤𝜃1𝑒−2𝚤𝜃2 𝑒2𝚤𝜃1𝑒−2𝚤𝜃2

𝑒−2𝚤𝜃1𝑒−𝚤𝜃2 𝑒−𝚤𝜃1𝑒−𝚤𝜃2 𝑒−𝚤𝜃2 𝑒𝚤𝜃1𝑒−𝚤𝜃2 𝑒2𝚤𝜃1𝑒−𝚤𝜃2

𝑒−2𝚤𝜃1 𝑒−𝚤𝜃1 1 𝑒𝚤𝜃1 𝑒2𝚤𝜃1

𝑒−2𝚤𝜃1𝑒𝚤𝜃2 𝑒−𝚤𝜃1𝑒𝚤𝜃2 𝑒𝚤𝜃2 𝑒𝚤𝜃1𝑒𝚤𝜃2 𝑒2𝚤𝜃1𝑒𝚤𝜃2

𝑒−2𝚤𝜃1𝑒2𝚤𝜃2 𝑒−𝚤𝜃1𝑒2𝚤𝜃2 𝑒2𝚤𝜃2 𝑒𝚤𝜃1𝑒2𝚤𝜃2 𝑒2𝚤𝜃1𝑒2𝚤𝜃2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and then, the Fourier symbol 𝐴2(𝜃) is given as follows:
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𝐴2(𝜃) =
5∑
𝑖=1

5∑
𝑗=1

𝐴2(𝑖, 𝑗)𝐹2(𝑖, 𝑗).

Note that the size of the matrix of Fourier modes is determined by the 
size of the stencil of the discretization. In fact, the Fourier modes in 𝐹𝑝
are centred at the element ((𝑛 +1)∕2, (𝑛 +1)∕2), where 𝑛 × 𝑛 is the size of 
the stencil of the discrete operator 𝐴𝑝.
The Fourier symbols of the inter-grid transfer operators, 𝐼𝑝𝑙𝑜𝑤𝑝 (𝜃) and 
𝐼
𝑝
𝑝𝑙𝑜𝑤

(𝜃), are obtained in the same way, but taking into account that the 
Fourier modes depend on the related positions among the grid-functions 
considered for the two levels.
Finally, the Fourier symbols of the multiplicative Schwarz smoothers 
considered in this work, 𝑆𝑝(𝜃), can be found in [14], where they are 
carefully detailed.
In this way, the asymptotic convergence factor of the two-level method 
can be estimated by the following expression

𝜌2𝑔 = sup
𝜃∈Θ

|𝑇 𝑝𝑙𝑜𝑤𝑝 (𝜃)|. (10)

In order to support the approximation approach by multigrid 
method on the coarse level given in Section 3.2, we have to take into 
account a smoothing effect at the second level and, by means of a stan-
dard coarsening on the mesh size ℎ, a third level whose discretization 
corresponds to the spline space 𝑝𝑙𝑜𝑤2ℎ ((0, 1)2). Thus, a three-grid analy-
sis is required and a smoother 𝑆𝑝𝑙𝑜𝑤 is considered. For this purpose, we 
introduce the error propagation matrix 𝑀𝑝𝑙𝑜𝑤,2ℎ

𝑝,ℎ
as follows:

𝑀
𝑝𝑙𝑜𝑤,2ℎ
𝑝,ℎ

= (𝐼 − 𝐼𝑝𝑝𝑙𝑜𝑤 (𝐼 − (𝑀𝑝𝑙𝑜𝑤,2ℎ
𝑝𝑙𝑜𝑤,ℎ

))𝐴−1
𝑝𝑙𝑜𝑤

𝐼
𝑝𝑙𝑜𝑤
𝑝 𝐴𝑝)𝑆𝑝,

where 𝑀𝑝𝑙𝑜𝑤,2ℎ
𝑝𝑙𝑜𝑤,ℎ

is the two-grid operator between the second and third 
levels, that is,

𝑀
𝑝𝑙𝑜𝑤,2ℎ
𝑝𝑙𝑜𝑤,ℎ

= 𝑆𝜈2𝑝𝑙𝑜𝑤 (𝐼 − 𝐼
ℎ
2ℎ𝐴

−1
𝑝𝑙𝑜𝑤,2ℎ

𝐼2ℎ
ℎ
𝐴𝑝𝑙𝑜𝑤 )𝑆

𝜈1
𝑝𝑙𝑜𝑤

,

with 𝐼ℎ2ℎ and 𝐼2ℎ
ℎ

the standard inter-grid transfer operators between the 
grids of size ℎ and 2ℎ. In addition, 𝜈1 and 𝜈2 denote the number of pre-
and post-smoothing steps of the smoother 𝑆𝑝𝑙𝑜𝑤 on the second level.
In this case, in the transition from the second to the third level, some 
Fourier modes are coupled. Hence, we split the Fourier components 
into high- and low-frequency components on ℎ. The low-frequency 
Fourier components are those associated with frequencies belonging to 
Θ2ℎ = (−𝜋∕2, 𝜋∕2]2. Then, each low-frequency 𝜃00 = (𝜃001 , 𝜃

00
2 ) ∈ Θ2ℎ is 

coupled with three high frequencies 𝜃11, 𝜃10, 𝜃01, given by 𝜃𝑖𝑗 = 𝜃00 −
(𝑖 sign(𝜃001 ), 𝑗 sign(𝜃002 ))𝜋, 𝑖, 𝑗 = 0, 1, giving rise to the so-called spaces of 
2ℎ-harmonics:

2(𝜃00) = span
{
𝜑ℎ(𝜃00, ⋅), 𝜑ℎ(𝜃11, ⋅), 𝜑ℎ(𝜃10, ⋅), 𝜑ℎ(𝜃01, ⋅)

}
, with 𝜃00 ∈ Θ2ℎ.

Based on this decomposition of the Fourier space in terms of the sub-
spaces of 2ℎ-harmonics, the spectral radius of the three-grid operator 
can be computed as follows:

𝜌3𝑔 = 𝜌(𝑀
𝑝𝑙𝑜𝑤,2ℎ
𝑝,ℎ

) = sup
𝜃00∈Θ2ℎ

𝜌(𝑀𝑝𝑙𝑜𝑤,2ℎ
𝑝,ℎ

(𝜃00)).

Finally, in order to analyze the improved version of the two-grid al-
gorithm given in Section 3.3, we apply a two-grid LFA in which from 
the fine to the coarse levels we reduce the polynomial degree from 𝑝 to 
𝑝𝑙𝑜𝑤 and also we double the grid-size from ℎ to 2ℎ. This two-grid anal-
ysis couples Fourier modes as explained before, and the corresponding 
error transfer operator is given by:

𝑇
𝑝𝑙𝑜𝑤,2ℎ
𝑝,ℎ

= (𝐼 − 𝐼𝑝,ℎ
𝑝𝑙𝑜𝑤,2ℎ

𝐴−1
𝑝𝑙𝑜𝑤,2ℎ

𝐼
𝑝𝑙𝑜𝑤,2ℎ
𝑝,ℎ

𝐴𝑝)𝑆𝑝,

where the transfer operators between the spaces 𝑝
ℎ
((0, 1)2) and

𝑝𝑙𝑜𝑤2ℎ ((0, 1)2), that is 𝐼𝑝,ℎ
𝑝𝑙𝑜𝑤,2ℎ

and 𝐼𝑝𝑙𝑜𝑤,2ℎ
𝑝,ℎ

, are obtained by composition 
of 𝐼𝑝𝑙𝑜𝑤𝑝 , 𝐼𝑝𝑝 and the transfer operators 𝐼2ℎ, 𝐼ℎ between spline spaces 
𝑙𝑜𝑤 ℎ 2ℎ
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Table 1

Two-level (𝜌2𝑔 ) convergence factors predicted by LFA together with the asymp-
totic convergence factors obtained numerically (𝜌ℎ), for different values of the 
spline degree 𝑝. In this case, the second level is a linear discretization with the 
same mesh size ℎ considered for the first level.

9p Schwarz 25p Schwarz 49p Schwarz

𝜌2𝑔 𝜌ℎ 𝜌2𝑔 𝜌ℎ 𝜌2𝑔 𝜌ℎ

𝑝 = 2 0.1234 0.1212 0.0813 0.0752 0.0604 0.0725
𝑝 = 3 0.2150 0.2141 0.0874 0.0854 0.0622 0.0712
𝑝 = 4 0.4581 0.4558 0.1294 0.1466 0.0697 0.0852
𝑝 = 5 0.7095 0.7058 0.2690 0.2847 0.1001 0.1215
𝑝 = 6 0.8786 0.8756 0.4549 0.4555 0.1909 0.2113
𝑝 = 7 0.9576 0.9573 0.6623 0.6601 0.3260 0.3284
𝑝 = 8 0.9868 0.9851 0.8278 0.8146 0.4885 0.4764

with equal spline degree but different mesh size ℎ and 2ℎ. From this ex-
pression, the asymptotic convergence factor of the improved two-level 
method can be estimated by the following expression:

𝜌
𝑎𝑔

2𝑔 = sup
𝜃00∈Θ2ℎ

𝜌(𝑇 𝑝𝑙𝑜𝑤,2ℎ
𝑝,ℎ

(𝜃00)). (11)

4.2. Local Fourier analysis results

Next, we show some LFA results to demonstrate the good perfor-
mance of the proposed two-level method. Firstly, we consider a linear 
discretization as the second level, that is, 𝑝𝑙𝑜𝑤 = 1. In Table 1, the two-
level convergence factors predicted by LFA, 𝜌2𝑔 , are shown together 
with the asymptotic convergence factors, 𝜌ℎ, obtained numerically for 
different values of the spline degree 𝑝 varying from 𝑝 = 2 to 𝑝 = 8. The 
asymptotic convergence factors are obtained numerically by solving 
problem (1) with a zero right-hand side and a random initial guess. 
We consider the 9-point, 25-point and 49-point multiplicative Schwarz 
iterations at the first level. It can be seen from Table 1 that the factors 
predicted by LFA match very accurately the asymptotic convergence 
factors numerically obtained, and therefore the LFA results in a very 
useful tool to analyze the performance of the method. It is also observed 
from the table that choosing an appropriate multiplicative Schwarz 
smoother for each polynomial degree 𝑝, we obtain a robust solver with 
respect to 𝑝. This choice of the size of the blocks in the relaxation de-
pending on the spline degree is done taking into account the two-grid 
convergence factors provided by the LFA, as well as the computational 
cost of the algorithm. In particular, we choose blocks of size 3 × 3 (9-
point Schwarz smoother) for the cases 𝑝 = 2, 3, 4, blocks of size 5 × 5
(25-point Schwarz smoother) for the cases 𝑝 = 5, 6 and blocks of size 
7 × 7 (49-point Schwarz smoother) for spline degree 𝑝 = 7, 8. For a more 
detailed explanation of how to choose the size of the blocks of the mul-
tiplicative Schwarz relaxations for different values of 𝑝, in terms of the 
LFA results and the computational cost, we refer the reader to [14].

Next, we present some LFA results in order to support the approach 
proposed in Section 3.2. In this case, one single iteration of a 𝐹 (1, 1)-
cycle using red-black Gauss-Seidel as smoother is considered to approx-
imate the problem on the coarse level. Thus, in order to analyze such 
approximation, we need to use the three-grid local Fourier analysis in-
troduced in Section 4.1. In Table 2, we show the three-grid convergence 
factors (𝜌3𝑔) provided by LFA. One can observe that the predictions 
provided by the three-grid LFA match very well with the two-grid con-
vergence factors predicted by the analysis for the two-level algorithm 
(with exact solve on the coarse level) shown in Table 1.

Finally, we want to analyze the improvement of the algorithm pre-
sented in Section 3.3. In order to do this, we need to consider that in 
the second level of the algorithm we now assume a grid-size 2ℎ in ad-
dition of the reduction of the spline degree to 𝑝𝑙𝑜𝑤. Again, LFA is able 
to support this approach by using a two-grid analysis. In Table 3, the 
two-level convergence factors provided by this analysis (see expression 
in (11)) are shown.
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Table 2

Three-level (𝜌3𝑔 ) convergence factors predicted by LFA, for dif-
ferent values of the spline degree 𝑝.

9p Schwarz 25p Schwarz 49p Schwarz

𝑝 = 2 0.1281 0.0847 0.0624
𝑝 = 3 0.2144 0.0920 0.0690
𝑝 = 4 0.4566 0.1290 0.0733
𝑝 = 5 0.7078 0.2676 0.0986
𝑝 = 6 0.8773 0.4549 0.1909
𝑝 = 7 0.9569 0.6591 0.3174
𝑝 = 8 0.9864 0.8250 0.4734

Table 3

Two-grid (𝜌𝑎𝑔2𝑔 ) convergence factors predicted by LFA for differ-
ent values of the spline degree 𝑝, for the improved version of 
the algorithm.

9p Schwarz 25p Schwarz 49p Schwarz

𝑝 = 2 0.1723 0.1137 0.0837
𝑝 = 3 0.2145 0.1152 0.0863
𝑝 = 4 0.4566 0.1290 0.0874
𝑝 = 5 0.7078 0.2676 0.0986
𝑝 = 6 0.8773 0.4549 0.1909
𝑝 = 7 0.9569 0.6591 0.3174
𝑝 = 8 0.9864 0.8250 0.4734

Table 4

Two-level (𝜌𝑎𝑔2𝑔 ) convergence factors predicted by LFA together with the asymp-
totic convergence factors obtained numerically (𝜌ℎ), for different values of the 
spline degree 𝑝. In this case, the second level is a quadratic discretization with 
mesh size 𝐻 = 2ℎ considered for the second level.

9p Schwarz 25p Schwarz 49p Schwarz

𝜌
𝑎𝑔

2𝑔 𝜌ℎ 𝜌
𝑎𝑔

2𝑔 𝜌ℎ 𝜌
𝑎𝑔

2𝑔 𝜌ℎ

𝑝 = 3 0.2144 0.2125 0.0700 0.0776 0.0550 0.0596
𝑝 = 4 0.4566 0.4539 0.1290 0.1453 0.0522 0.0641
𝑝 = 5 0.7078 0.7088 0.2676 0.2807 0.0986 0.1181
𝑝 = 6 0.8773 0.8707 0.4549 0.4477 0.1909 0.1999
𝑝 = 7 0.9569 0.9549 0.6591 0.6640 0.3174 0.3235
𝑝 = 8 0.9864 0.9833 0.8250 0.8304 0.4734 0.4646

In order to support this approach for different values of 𝑝𝑙𝑜𝑤, a two-
grid analysis has been carried out such that an isogeometric discretiza-
tion with grid-size 𝐻 = 2ℎ and 𝑝𝑙𝑜𝑤 = 2 is considered at the second level. 
Hence, in Table 4 the two-grid convergence factors 𝜌𝑎𝑔2𝑔 provided by this 
analysis are shown together with the ones obtained experimentally with 
our multigrid codes (𝜌ℎ).

Given that this last approach is more efficient and does not deteri-
orate the performance of the two-level method introduced before, this 
will be the strategy used in the numerical experiments section.

5. Comparison between the proposed two-level algorithm and 
𝒉-multigrid

In this section, we compare the performance of the proposed two-
level algorithm and the ℎ-multigrid method introduced in [14]. In 
that paper, an ℎ-multigrid method based on multiplicative Schwarz 
smoothers was proved to be a robust solver with respect to the poly-
nomial degree up to 𝑝 = 8. The strategy to choose the size of the 
block within the smoother, depending on the polynomial degree, is the 
one that we adopted here for the fine level in the proposed two-level 
method. The difference, however, is that in the ℎ-multigrid the multi-
plicative Schwarz relaxation is applied on every grid in the hierarchy, 
whereas here we only apply such an iteration on the fine level, and 
from the second level we approximate the solution of a linear/quadratic 
problem by using a single 𝐹 (1, 1)-cycle based on a standard red-black 
smoother. Although the most expensive part of both algorithms is the 
application of the multiplicative Schwarz iteration on the fine target 
grid, we can show that the two-level algorithm proposed in this work 
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improves the performance of the ℎ-multigrid method since it consider-
ably reduces the computational cost at the second and coarser levels, 
resulting in an improvement of the previous approach.

First, we want to show that the convergence factor obtained by the 
two analyzed methods is almost the same. For this purpose, in Fig. 2, 
we compare the Fourier symbol of the two versions of the two-level 
algorithm proposed in this work, by considering on the second level 
𝑝𝑙𝑜𝑤 = 1 and mesh size (a) 𝐻 = ℎ or (b) 𝐻 = 2ℎ, respectively, together 
with (c) the Fourier symbol of the two-grid operator corresponding to 
the ℎ-multigrid, with the same polynomial degree 𝑝 on the first and 
second levels and standard coarsening. These Fourier symbols are dis-
played for two different spline degrees on the fine grid: 𝑝 = 3 on the top 
row and 𝑝 = 7 on the bottom row. Thus, with the help of the LFA we 
can observe that the three approaches provide very similar asymptotic 
convergence factors.

The main difference lies in the computational cost of the methods. 
It is obvious that choosing 𝐻 = 2ℎ instead of 𝐻 = ℎ on the second level 
of the two-level algorithm proposed here reduces the cost. Thus, this 
approach is the one that we are going to compare with the ℎ-multigrid 
method introduced in [14]. Since the improvement of the proposed two-
level algorithm is more significative for high-order discretizations, we 
consider spline degrees ranging from 𝑝 = 4 to 𝑝 = 8 for the compari-
son presented in Fig. 3. In such a figure, we show the ratios of the 
CPU times required to solve the Poisson equation on a square domain 
applying the proposed two-level algorithm using at the second level a 
single 𝐹 (1, 1)-cycle based on red-black Gauss-Seidel smoothing and the 
CPU times required to solve the same problem applying the ℎ-multigrid 
method presented in [14]. These ratios are shown for different num-
bers of refinement levels on the horizontal axis. We can observe that, 
for most of the considered spline degrees, the CPU times obtained with 
the solver proposed in this work are close to a 25% faster than those 
obtained with the ℎ-multigrid method. Thus, we can state that the two-
level strategy proposed here clearly improves the performance of the 
ℎ-multigrid solver.

6. Numerical experiments

In order to support the robustness and efficiency of the proposed 
two-level method, we have considered three different numerical exper-
iments. In the first one, we deal with a bidimensional problem on a 
square domain and then we consider two bidimensional problems de-
fined in physical domains with nontrivial geometries, namely, a quarter 
annulus and a unit disk, respectively. For the first numerical experiment 
we consider B-splines as basis functions and 𝑝𝑙𝑜𝑤 = 1, whereas for the 
second and third numerical experiments NURBS are used in order to ex-
actly describe the geometry for the considered domains and therefore 
𝑝𝑙𝑜𝑤 = 2 is considered.

As it was mentioned in Section 3, we consider only one step of the 
coloured version of the multiplicative Schwarz method at the fine level. 
Instead of solving exactly at the coarse level, we follow the approxima-
tion strategy proposed in Section 3.2 with the improvement introduced 
in Section 3.3. In all the experiments, the coarsest grid is composed of 
2 × 2 elements. Moreover, the initial guess is taken as a random vector 
and the stopping criterion for our two-level solver is set to reduce the 
initial residual by a factor of 10−8. All the methods have been imple-
mented in our in-house Fortran code, and the numerical computations 
have been carried out on an hp pavilion laptop 15-cs0008ns with a Core 
i7-8550U with 1,80 GHz and 16 GB RAM, running Windows 10.

6.1. Square domain

Now, let us apply our two-level method based on overlapping mul-
tiplicative Schwarz iterations on a two-dimensional problem defined on 
a square domain Ω = (0, 1)2. We consider the following problem:{

−Δ𝑢 = 2𝜋2 sin(𝜋𝑥) sin(𝜋𝑦), (𝑥, 𝑦) ∈ Ω,
𝑢(𝑥, 𝑦) = 0, (𝑥, 𝑦) on 𝜕Ω.
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Fig. 2. Distribution of eigenvalues. (a) Two-level operator considering on the second level 𝑝𝑙𝑜𝑤 = 1 and mesh size 𝐻 = ℎ, (b) Two-level operator considering on the 
second level 𝑝𝑙𝑜𝑤 = 1 and mesh size 𝐻 = 2ℎ, and (c) Two-grid operator corresponding to the ℎ-multigrid with standard coarsening. These distributions of eigenvalues 
are shown for spline degrees 𝑝 = 3 on the top row, and 𝑝 = 7 on the bottom row.
Fig. 3. Ratios of the CPU times required to solve the Poisson equation on a 
square domain applying the two-level algorithm proposed here and the CPU 
times required to solve the same problem applying the ℎ-multigrid method 
given in [14], for spline degrees ranging from 𝑝 = 4 to 𝑝 = 8.

For this numerical experiment, we consider the spline space given in 
(3) for different degrees ranging from 𝑝 = 2 until 𝑝 = 8. In addition, we 
consider a linear discretization for the coarse level and the size of the 
blocks is chosen depending on the spline degree. We choose blocks of 
size 3 ×3 for the cases 𝑝 = 2, 3, 4, blocks of size 5 ×5 for the cases 𝑝 = 5, 6
and blocks of size 7 × 7 for spline degree 𝑝 = 7, 8.

In Table 5, we show the number of iterations (𝑖𝑡) and the cpu time 
(𝑐𝑝𝑢) in seconds needed to reach the stopping criterion for several mesh 
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sizes and different spline degrees 𝑝 = 2, … , 8. We observe that in both 
cases the iteration numbers are robust with respect to the size of the 
grid ℎ and the spline degree 𝑝. With these results, we can conclude 
that our two-level method provides an efficient and robust solver for 
B-spline isogeometric discretizations.

6.2. Quarter annulus

For the second experiment, our goal is to apply the two-level method 
to a two-dimensional problem defined in a nontrivial geometry. Thus, 
we set as physical domain the quarter of an annulus,

Ω= {(𝑥, 𝑦) ∈ℝ2 | 𝑟2 < 𝑥2 + 𝑦2 <𝑅2, 𝑥, 𝑦 > 0},

where 𝑟 = 0.3, 𝑅 = 0.5. Hence, we consider the solution of the Poisson 
problem in such domain with homogeneous Dirichlet boundary condi-
tions{

−Δ𝑢 = 𝑓 (𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω,
𝑢(𝑥, 𝑦) = 0, (𝑥, 𝑦) on 𝜕Ω,

where 𝑓 (𝑥, 𝑦) is such that the exact solution is

𝑢(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦)(𝑥2 + 𝑦2 − 𝑟2)(𝑥2 + 𝑦2 −𝑅2).

In order to construct this computational domain, the use of quadratic 
NURBS basis functions is required. Thus, we consider discretizations of 
degree 𝑝 = 3, … , 8 with maximal smoothness for the fine level whereas 
the quadratic discretization is used at the coarse level. In this case, we 
compare the performance of the multigrid method (MG) proposed in 
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Table 5

Square domain problem. Number of the proposed two-level method iterations (𝑖𝑡) and computational time 
(𝑐𝑝𝑢) necessary to reduce the initial residual in a factor of 10−8 , for different mesh-sizes ℎ and for different 
values of the spline degree 𝑝, using the most appropriate coloured multiplicative Schwarz smoother for 
each 𝑝.

Colour 9p Schwarz Colour 25p Schwarz Colour 49p Schwarz

𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5 𝑝 = 6 𝑝 = 7 𝑝 = 8

Grid 𝑖𝑡 𝑐𝑝𝑢 𝑖𝑡 𝑐𝑝𝑢 𝑖𝑡 𝑐𝑝𝑢 𝑖𝑡 𝑐𝑝𝑢 𝑖𝑡 𝑐𝑝𝑢 𝑖𝑡 𝑐𝑝𝑢 𝑖𝑡 𝑐𝑝𝑢

642 5 0.04 5 0.06 7 0.09 4 0.15 5 0.21 4 0.64 4 0.65
1282 5 0.12 5 0.15 7 0.25 4 0.38 5 0.57 4 1.57 4 1.62
2562 5 0.40 5 0.48 7 0.79 4 1.14 5 1.71 4 4.20 4 4.39
5122 5 1.46 5 1.76 7 2.95 4 3.90 5 5.85 4 12.49 4 13.01
10242 5 5.85 5 7.01 7 11.71 4 14.59 5 21.74 4 41.42 4 43.09
Table 6

Quarter annulus problem. Number of the proposed two-level method iterations 
(𝑖𝑡) necessary to reduce the initial residual in a factor of 10−8 , for different 
mesh-sizes ℎ and for different values of the spline degree 𝑝, using the most 
appropriate coloured multiplicative Schwarz smoother for each 𝑝.

Grid C. 9p Schwarz C. 25p Schwarz C. 49p Schwarz

𝑝 = 3 𝑝 = 4 𝑝 = 5 𝑝 = 6 𝑝 = 7 𝑝 = 8
DS MG DS MG DS MG DS MG DS MG DS MG

322 5 5 8 7 4 4 6 6 4 3 4 5
642 5 6 8 8 4 4 6 6 4 4 5 5
1282 6 6 8 8 4 4 6 6 4 4 5 5
2562 6 6 8 7 4 4 6 6 4 4 5 5

Section 3.3 with a two-level based on a direct solver (DS) at the second 
level. For this purpose, in Table 6 we show the number of iterations 
needed to reach the stopping criterion for several mesh sizes and differ-
ent spline degrees 𝑝 = 3, … , 8. We observe that the use of the mentioned 
MG at the coarse level provides almost the same number of iterations 
than the version with the direct solver. Thus, we can conclude that 
our two-level method results in an efficient and robust solver also for 
NURBS discretizations.

6.3. Unit disk domain

For the last experiment, we apply our two-level method to another 
non-trivial planar geometry. We consider the unit disk (𝑟 = 1) as physi-
cal domain:

Ω= {(𝑥, 𝑦) ∈ℝ2 |𝑥2 + 𝑦2 < 1}.

In this case, we consider the same Poisson problem with homogeneous 
Dirichlet boundary conditions such that the exact solution is given by

𝑢(𝑥, 𝑦) = (𝑥2 + 𝑦2 − 𝑟2) sin(𝜋𝑥) sin(𝜋𝑦).

The geometry of the unit disk Ω is described by using a quadratic 
NURBS surface (𝑝, 𝑞 = 2) with knot vector Ξ = {0, 0, 0, 1, 1, 1} in both di-
rections. In Fig. 4 (a), we show the control mesh required to parametrize 
the unit disk. In addition, we provide the control points together with 
the corresponding weights in Fig. 4 (b).

Again, a quadratic discretization is used at the coarse level whereas 
discretizations of spline degree ranging from 𝑝 = 3 to 𝑝 = 8 that hold 
global smoothness 𝑝−1 are considered for the fine level. In order to 
support the good performance of the strategy proposed in Section 3.3, 
we compare its performace with a two-level method based on a direct 
solver at the second level. Thus, in Table 7, we show the number of 
iterations needed to reach the stopping criterion for several mesh sizes 
and different spline degrees 𝑝 = 3, … , 8.

We can observe that the number of iterations required to reach the 
stopping criterion on both approaches are almost the same. Finally, the 
results presented in Table 7 also show that our solver is robust with re-
spect to the spline degree 𝑝 when NURBS discretizations are considered.
49
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(a) (b)

Fig. 4. Example of the quadratic NURBS transformation of the unit disk: (a) 
control mesh and (b) control points 𝐏𝑖,𝑗 and their corresponding weights 𝜔𝑖,𝑗 .

Table 7

Unit disk problem. Number of the proposed two-level method iterations (𝑖𝑡) 
necessary to reduce the initial residual in a factor of 10−8 , for different mesh-
sizes ℎ and for different values of the spline degree 𝑝, using the most appropriate 
coloured multiplicative Schwarz smoother for each 𝑝.

C. 9p Schwarz C. 25p Schwarz C. 49p Schwarz

𝑝 = 3 𝑝 = 4 𝑝 = 5 𝑝 = 6 𝑝 = 7 𝑝 = 8

Grid DS MG DS MG DS MG DS MG DS MG DS MG

322 2 2 4 4 2 2 3 3 2 2 3 3
642 2 3 4 4 2 2 3 3 2 2 2 2
1282 2 3 4 5 2 2 3 3 2 2 2 2
2562 2 4 4 5 2 2 3 3 2 2 2 2

7. Conclusions

In this work, we propose a two-level method for solving isogeomet-
ric discretizations of an arbitrary polynomial degree in an efficient and 
robust way. The algorithm considers the target polynomial degree on 
the fine level and a linear or quadratic approximation on the coarse 
level dictated by the parametrization of the physical domain. In this 
method, only one iteration of an appropriate multiplicative Schwarz 
method is applied on the fine level, and the coarse level can be exactly 
solved by using well-known techniques for solving linear and quadratic 
discretizations. The user can choose the preferred approach on the 
coarse level, but here we propose to approximate the coarse problem 
by using one single iteration of a suitable ℎ-multigrid. In particular, we 
apply one 𝐹 (1, 1)-cycle based on a red-black Gauss-Seidel smoother. An 
enhancement of the performance of the solver is obtained if we apply a 
standard coarsening strategy from the first to the second level by con-
sidering a grid of size ℎ on the fine level and a coarse grid-size of 2ℎ. The 
good convergence results of the proposed method are theoretically sup-
ported by two- and three-grid local Fourier analysis and also they are 
demonstrated by means of three numerical experiments. Furthermore, 
we show that the proposed two-level algorithm improves the perfor-
mance of a successful ℎ-multigrid method recently proposed in [14] for 
solving the same type of isogeometric discretizations.
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