342 research outputs found

    Multiple-Resampling Receiver Design for OFDM Over Doppler-Distorted Underwater Acoustic Channels

    Get PDF
    Cataloged from PDF version of article.In this paper, we focus on orthogonal frequency-divisionmultiplexing (OFDM) receiver designs for underwater acoustic (UWA) channels with user- and/or path-specific Doppler scaling distortions. The scenario is motivated by the cooperative communications framework, where distributed transmitter/receiver pairs may experience significantly different Doppler distortions, as well as by the single-user scenarios, where distinct Doppler scaling factors may exist among different propagation paths. The conventional approach of front–end resampling that corrects for common Doppler scalingmay not be appropriatein such scenarios, rendering a post-fast-Fourier-transform (FFT) signal that is contaminated by user- and/or path-specific intercarrier interference. To counteract this problem, we propose a family of front–end receiver structures thatutilizemultiple-resampling (MR)branches,eachmatched to the Doppler scaling factor of a particular user and/or path. Following resampling, FFT modules transform the Doppler-compensated signals into the frequency domain for further processing through linear or nonlinear detection schemes. As part of the overall receiver structure, a gradient–descent approachis also proposed to refine the channel estimates obtained by standard sparse channel estimators. The effectiveness and robustness of the proposed receivers are demonstrated via simulations, as well as emulations based on real data collected during the 2010 Mobile Acoustic Communications Experiment (MACE10, Martha’s Vineyard, MA) and the 2008 Kauai Acomms MURI (KAM08, Kauai, HI) experiment

    Investigation of VBLAST Equalization Technique for Underwater Acoustic Communications

    Get PDF
    Underwater Acoustic Communications (UWAC) is an emerging technology in the field of underwater communications, and it is challenging because of the signal attenuation of the sound waves. Multiple Input and Multiple-Output (MIMO) is introduced in UWAC because of its support in enhancing the data throughput even under the conditions of interference, signal fading, and multipath. The paper presents the concept and analysis of 2× 2 MIMO UWAC systems that uses a 4- QAM spatial modulation scheme thus minimizing the decoding complexity and overcoming the Inter Channel Interference (IChI). Bit Error Rate (BER) investigation is carried out over different link distances under acoustic Line of Sight (LOS). The utilization of Zero Forcing (ZF) and Vertical-Bell Laboratories Layered Space-Time (VBLAST) equalizers, which estimates the transmitted data proves a success of removing Inter Symbol Interference (ISI).  The ISI caused due to multipath effect and scattering in UWAC can be reduced by iterative process considered in VBLAST.  A study is made on how the distance between the transmitter and the receiver and the Doppler Effect has its impact on the performance of the system

    A Channel-Aware Adaptive Modem for Underwater Acoustic Communications

    Get PDF
    Acoustic underwater channels are very challenging, because of limited bandwidth, long propagation delays, extended multipath, severe attenuation, rapid time variation and large Doppler shifts. A plethora of underwater communication techniques have been developed for dealing with such a complexity, mostly tailoring specific applications scenarios which can not be considered as one-size-fits-all solutions. Indeed, the design of environment-specific solutions is especially critical for modulations with high spectral efficiency, which are very sensitive to channel characteristics. In this paper, we design and implement a software-defined modem able to dynamically estimate the acoustic channel conditions, tune the parameters of a OFDM modulator as a function of the environment, or switch to a more robust JANUS/FSK modulator in case of harsh propagation conditions. The temporal variability of the channel behavior is summarized in terms of maximum delay spread and Doppler spread. We present a very efficient solution for deriving these parameters and discuss the limit conditions under which the OFDM modulator can work. In such scenarios, we also calibrate the prefix length and the number of sub-carriers for limiting the inter-symbol interference and signal distortions due to the Doppler effect. We validate our estimation and adaptation techniques by using both a custom-made simulator for time-varying underwater channels and the well-known Watermark simulator, as well as real in field experiments. Our results show that, for many practical cases, a dynamic adjustment of the prefix length and number of sub-carriers may enable the utilization of OFDM modulations in underwater communications, while in harsher environments JANUS can be used as a fall-back modulation

    Doctor of Philosophy

    Get PDF
    dissertationThe demand for high speed communication has been increasing in the past two decades. Multicarrier communication technology has been suggested to address this demand. Orthogonal frequency-division multiplexing (OFDM) is the most widely used multicarrier technique. However, OFDM has a number of disadvantages in time-varying channels, multiple access, and cognitive radios. On the other hand, filterbank multicarrier (FBMC) communication has been suggested as an alternative to OFDM that can overcome the disadvantages of OFDM. In this dissertation, we investigate the application of filtered multitone (FMT), a subset of FBMC modulation methods, to slow fading and fast fading channels. We investigate the FMT transmitter and receiver in continuous and discrete time domains. An efficient implementation of FMT systems is derived and the conditions for perfect reconstruction in an FBMC communication system are presented. We derive equations for FMT in slow fading channels that allow evaluation of FMT when applied to mobile wireless communication systems. We consider using fractionally spaced per tone channel equalizers with different number of taps. The numerical results are presented to investigate the performance of these equalizers. The numerical results show that single-tap equalizers suffice for typical wireless channels. The equalizer design study is advanced by introducing adaptive equalizers which use channel estimation. We derive equations for a minimum mean square error (MMSE) channel estimator and improve the channel estimation by considering the finite duration of channel impulse response. The results of optimum equalizers (when channel is known perfectly) are compared with those of the adaptive equalizers, and it is found that a loss of 1 dB or less incurs. We also introduce a new form of FMT which is specially designed to handle doubly dispersive channels. This method is called FMT-dd (FMT for doubly dispersive channels). The proposed FMT-dd is applied to two common methods of data symbol orientation in the time-frequency space grid; namely, rectangular and hexagonal lattices. The performance of these methods along with OFDM and the conventional FMT are compared and a significant improvement in performance is observed. The FMT-dd design is applied to real-world underwater acoustic (UWA) communication channels. The experimental results from an at-sea experiment (ACOMM10) show that this new design provides a significant gain over OFDM. The feasibility of implementing a MIMO system for multicarrier UWA communication channels is studied through computer simulations. Our study emphasizes the bandwidth efficiency of multicarrier MIMO communications .We show that the value of MIMO to UWA communication is very limited

    A channel aware adaptive modem for underwater acoustic communications

    Get PDF
    Acoustic underwater channels are very challenging, because of limited bandwidth, long propagation delays, extended multipath, severe attenuation, rapid time variation and large Doppler shifts. A plethora of underwater communication techniques have been developed for dealing with such a complexity, mostly tailoring specific applications scenarios which can not be considered as one-size-fits-all solutions. Indeed, the design of environment-specific solutions is especially critical for modulations with high spectral efficiency, which are very sensitive to channel characteristics. In this paper, we design and implement a software-defined modem able to dynamically estimate the acoustic channel conditions, tune the parameters of a OFDM modulator as a function of the environment, or switch to a more robust JANUS/FSK modulator in case of harsh propagation conditions. The temporal variability of the channel behavior is summarized in terms of maximum delay spread and Doppler spread. We present a very efficient solution for deriving these parameters and discuss the limit conditions under which the OFDM modulator can work. In such scenarios, we also calibrate the prefix length and the number of sub-carriers for limiting the inter-symbol interference and signal distortions due to the Doppler effect. We validate our estimation and adaptation techniques by using both a custom-made simulator for time-varying underwater channels and the well-known Watermark simulator, as well as real in field experiments. Our results show that, for many practical cases, a dynamic adjustment of the prefix length and number of sub-carriers may enable the utilization of OFDM modulations in underwater communications, while in harsher environments JANUS can be used as a fall-back modulation

    Investigation of VBLAST Equalization Technique for Underwater Acoustic Communications

    Get PDF
    Underwater Acoustic Communications (UWAC) is an emerging technology in the field of underwater communications, and it is challenging because of the signal attenuation of the sound waves. Multiple Input and Multiple-Output (MIMO) is introduced in UWAC because of its support in enhancing the data throughput even under the conditions of interference, signal fading, and multipath. The paper presents the concept and analysis of 2× 2 MIMO UWAC systems that uses a 4- QAM spatial modulation scheme thus minimizing the decoding complexity and overcoming the Inter Channel Interference (IChI). Bit Error Rate (BER) investigation is carried out over different link distances under acoustic Line of Sight (LOS). The utilization of Zero Forcing (ZF) and Vertical-Bell Laboratories Layered Space-Time (VBLAST) equalizers, which estimates the transmitted data proves a success of removing Inter Symbol Interference (ISI).  The ISI caused due to multipath effect and scattering in UWAC can be reduced by iterative process considered in VBLAST.  A study is made on how the distance between the transmitter and the receiver and the Doppler Effect has its impact on the performance of the system

    Applying Spatial Diversity to Mitigate Partial Band Interference in Undersea Networks

    Get PDF
    Many acoustic channels suffer from interference which is neither narrowband nor impulsive. This relatively long duration partial band interference can be particularly detrimental to system performance. We survey recent work in interference mitigation and orthogonal frequency division multiplexing (OFDM) as background motivation to develop a spatial diversity receiver for use in underwater networks. The network consists of multiple distributed cabled hydrophones that receive data transmitted over a time-varying multipath channel in the presence of partial band interference produced by interfering active sonar signals as well as marine mammal vocalizations. In operational networks, many “dropped” messages are lost due to partial band interference which corrupts different portions of the received signal depending on the relative position of the interferers, information source and receivers due to the slow speed of propagation
    • …
    corecore