5,602 research outputs found

    Excitation Dropout: Encouraging Plasticity in Deep Neural Networks

    Full text link
    We propose a guided dropout regularizer for deep networks based on the evidence of a network prediction defined as the firing of neurons in specific paths. In this work, we utilize the evidence at each neuron to determine the probability of dropout, rather than dropping out neurons uniformly at random as in standard dropout. In essence, we dropout with higher probability those neurons which contribute more to decision making at training time. This approach penalizes high saliency neurons that are most relevant for model prediction, i.e. those having stronger evidence. By dropping such high-saliency neurons, the network is forced to learn alternative paths in order to maintain loss minimization, resulting in a plasticity-like behavior, a characteristic of human brains too. We demonstrate better generalization ability, an increased utilization of network neurons, and a higher resilience to network compression using several metrics over four image/video recognition benchmarks

    On palimpsests in neural memory: an information theory viewpoint

    Full text link
    The finite capacity of neural memory and the reconsolidation phenomenon suggest it is important to be able to update stored information as in a palimpsest, where new information overwrites old information. Moreover, changing information in memory is metabolically costly. In this paper, we suggest that information-theoretic approaches may inform the fundamental limits in constructing such a memory system. In particular, we define malleable coding, that considers not only representation length but also ease of representation update, thereby encouraging some form of recycling to convert an old codeword into a new one. Malleability cost is the difficulty of synchronizing compressed versions, and malleable codes are of particular interest when representing information and modifying the representation are both expensive. We examine the tradeoff between compression efficiency and malleability cost, under a malleability metric defined with respect to a string edit distance. This introduces a metric topology to the compressed domain. We characterize the exact set of achievable rates and malleability as the solution of a subgraph isomorphism problem. This is all done within the optimization approach to biology framework.Accepted manuscrip

    Approximations of Algorithmic and Structural Complexity Validate Cognitive-behavioural Experimental Results

    Full text link
    We apply methods for estimating the algorithmic complexity of sequences to behavioural sequences of three landmark studies of animal behavior each of increasing sophistication, including foraging communication by ants, flight patterns of fruit flies, and tactical deception and competition strategies in rodents. In each case, we demonstrate that approximations of Logical Depth and Kolmogorv-Chaitin complexity capture and validate previously reported results, in contrast to other measures such as Shannon Entropy, compression or ad hoc. Our method is practically useful when dealing with short sequences, such as those often encountered in cognitive-behavioural research. Our analysis supports and reveals non-random behavior (LD and K complexity) in flies even in the absence of external stimuli, and confirms the "stochastic" behaviour of transgenic rats when faced that they cannot defeat by counter prediction. The method constitutes a formal approach for testing hypotheses about the mechanisms underlying animal behaviour.Comment: 28 pages, 7 figures and 2 table

    Information theoretic approach for assessing image fidelity in photon-counting arrays

    Get PDF
    The method of photon-counting integral imaging has been introduced recently for three-dimensional object sensing, visualization, recognition and classification of scenes under photon-starved conditions. This paper presents an information-theoretic model for the photon-counting imaging (PCI) method, thereby providing a rigorous foundation for the merits of PCI in terms of image fidelity. This, in turn, can facilitate our understanding of the demonstrated success of photon-counting integral imaging in compressive imaging and classification. The mutual information between the source and photon-counted images is derived in a Markov random field setting and normalized by the source-image’s entropy, yielding a fidelity metric that is between zero and unity, which respectively corresponds to complete loss of information and full preservation of information. Calculations suggest that the PCI fidelity metric increases with spatial correlation in source image, from which we infer that the PCI method is particularly effective for source images with high spatial correlation; the metric also increases with the reduction in photon-number uncertainty. As an application to the theory, an image-classification problem is considered showing a congruous relationship between the fidelity metric and classifier’s performance
    • …
    corecore