26 research outputs found

    An investigation of geometrically induced swirl applied to lean phase pneumatic flows

    Get PDF
    This thesis provides unique insights into the application of a geometrically induced swirl by a three-lobed helix pipe on a lean phase of particulate suspension in air along a horizontal pipe section. A series of experimental and computational studies were applied to three flow conditions employing high speed photography, Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA), as well as Computational Fluid Dynamics (CFD) techniques. The CFD simulation predictions were validated both qualitatively and quantitatively against the experimental data and were then used to obtain further insights into the characteristics of the flow behaviour. The LDA measurements of u, v and w velocities were shown to be in good agreement with the predicted CFD velocity components. Additional pressure loss caused by the swirl pipe was found to be proportional to the Reynolds number of the flow and increased further with an addition of particles to the swirling flow. It was concluded that the swirl pipe imparts a wall jet type swirl to both an air-only flow and a lean pneumatic flow with velocity and momentum shifts from axial to tangential closer to the wall. The cusps and ridges of the twisted three lobe surfaces were shown to create a primary flow parallel to the flow axis, and secondary flows of a circulatory motion perpendicular to the primary flow. As a result, the trajectories followed by particles were observed to be affected by their size. The generated turbulence was shown to impart higher core axial velocity for both air and particles. The swirl was found to decay proportionally with the distance downstream of the swirl pipe and inversely to the flow's Reynolds number. The major conclusions drawn from the study were that the swirl pipe locally increases the conveying velocity and produced an improved particle distribution across the downstream section of the pipe

    CFD Modeling of Complex Chemical Processes: Multiscale and Multiphysics Challenges

    Get PDF
    Computational fluid dynamics (CFD), which uses numerical analysis to predict and model complex flow behaviors and transport processes, has become a mainstream tool in engineering process research and development. Complex chemical processes often involve coupling between dynamics at vastly different length and time scales, as well as coupling of different physical models. The multiscale and multiphysics nature of those problems calls for delicate modeling approaches. This book showcases recent contributions in this field, from the development of modeling methodology to its application in supporting the design, development, and optimization of engineering processes

    Swirling pipeflow of non-Newtonian and particle-laden fluids

    Get PDF
    This thesis describes the application of novel swirl inducing pipe to various pipe configurations, when pumping a range of fluids and fluid / particle mixtures. An extensive experimental programme, incorporating particle image velocimetry and photography, was implemented using a pipe flow loop designed specifically for the purpose. Experimental data was obtained on the effect of a 4-lobe near-optimal swirl pipe on coal-water, sand-water and magnetite-water slurries of various particle size. Results indicated that swirl induction produced greater benefit for denser slurries and higher concentrations, and that swirl induced into slurries containing larger and denser particles decayed more rapidly. At low velocity, experimental data highlighted a reduction in the total pressure drop experienced across a 3.0m horizontal pipe section, a downward sloping section and vertical pipe bends, when the swirl-inducing pipe was present. PIV was used to measure the axial and tangential velocity of swirling flows downstream of a near-optimal swirl-inducing pipe. It was confirmed that a significant tangential velocity was generated when pumping water in the turbulent regime, however, when the fluid viscosity was increased, leading to laminar flow, no significant tangential velocity was detected

    Untersuchung der Verbrennung von vorgetrocknetem Braunkohlestaub unter Oxyfuel-Bedingungen in einer großskaligen Laborfeuerung

    Get PDF
    The oxy-fuel combustion process with subsequent CO2 storage has received attention as a promising technology for capturing CO2 from fossil fuel power plants. Recent progress in understanding pulverized coal combustion under oxy-fired conditions is attributable in part to studies performed at laboratory bench-scale. Previous investigations have underlined some significant differences between conventional air-fired and oxy-fired combustion with regard to temperature, heat flux distribution, and pollutant emissions. While most studies provide information on the impacts of O2 concentration in the feed gas, the impact of burner configuration and operating settings on oxy-coal combustion have been investigated by only a handful of studies. The present study addresses the impact of oxy-fired conditions on the chemistry and dynamics of pulverized coal flames generated by a staged feed-gas burner operating with pre-dried lignite. Investigations were carried out in a newly constructed test facility where the combustion takes place in a horizontal up-fired furnace with a rated capacity of 0.40 MWth. Since the focus of this work is on adapting oxy-fuel combustion techniques to existing furnaces, great emphasis is placed on maintaining flame temperatures and heat transfer similar to that of conventional air combustion. The strategy adopted to investigate the impacts of burner settings is divided into theoretical and experimental investigations. In the theoretical study, the combustion-related parameters are calculated based on thermodynamic balances and act as a background for the definition of some important operating settings. Non-reacting flow simulations which include the burner and part of the furnace are performed using a CFD commercial code aimed at a qualitative evaluation of feed gas distribution and swirl strength on the flow pattern formed in the near burner region. These predictions assist in the interpretation of the experimental data and in the calculation of the swirl number at the exit of the burner. During the experimental investigations, the characteristics of diffusion flames were first investigated in a parametric study to evaluate the impact of secondary swirl numbers at three levels and secondary/tertiary flow ratios on the overall combustion performance. The second part of the test program involved detailed in-flame measurements for selected flames. Measurements of local gas temperature, gas species concentrations, and radiative heat flux were performed with standard water-cooled probes with special focus on the near burner region. Theoretical and experimental studies are also carried out under air-fired conditions and used as a benchmark throughout this study. The overall O2 fraction upstream of the burner was kept at 31 vol% and was defined with basis on a similar adiabatic flame temperature as air-firing. Flame stabilization was shown to be strongly dependent on the O2 fraction of the primary stream, feed gas distribution between the secondary and tertiary registers, and strength of the secondary swirl. Type-1 flames operating at a stoichiometric ratio of 1.17 were generated under air-fired and oxy-fired conditions and investigated in detail. Detailed flow pattern and flame structure studies show evidence of radial flame stratification consistent with gradual O2 admixing to the central fuel jet. Increasing the swirl number and the secondary/tertiary flow ratio enhances the mixing of coal particles and increases the temperatures close to burner. Much lower temperatures on the flame axis are observed under oxy-fired conditions. In the same region, higher CO concentrations were also observed, possibly as a result of CO2 dissociation and/or gasification reactions by water vapor and CO2 which contribute to lower temperatures. Very low CO concentration at the furnace exit and high particle burnout indicate that oxy-fired conditions are not an obstacle to achieving a high combustion efficiency for type-1 flames. Although SO2 concentrations were higher under oxy-fired conditions, the emission rates were very similar, indicating that SO2 emissions are exclusively dependent on the sulfur content of the coal. Experimental data obtained from the parametric study and in-flame measurements suggest great potential for NO abatement through flame aerodynamics for oxy-coal combustion. The experiments demonstrate that feed gas staging in a burner is an effective technique for improving the flame stratification in fuel-rich and fuel-lean zones. In particular, a combination of high swirl and high secondary/tertiary flow ratio results in significant NO reduction.Oxyfuel-Verbrennung mit anschließender Speicherung von CO2 erhält viel Aufmerksamkeit, da sie als eine vielversprechende Technologie zur CO2-Abscheidung bei fossilen Kraftwerken gilt. Jüngste Fortschritte im Verständnis der Kohlenstaubverbrennung unter Oxyfuel-Bedingungen sind zum Teil auf Untersuchungen im Labormaßstab und Testanlagen zurückzuführen. Frühere, grundlegende Untersuchungen haben einige bedeutende Unterschiede zwischen luftgefeuerter und sauerstoffgefeuerter Verbrennung hinsichtlich Temperaturen, Wärmestromverteilung und Schadstoffemissionen aufgezeigt. Während in den meisten Studien Informationen über die Auswirkungen der O2-Konzentration im Speisegas und die Auswirkungen der Brennereinstellungen nur in wenigen Arbeiten untersucht wurden, befasst sich die vorliegende Promotion mit dem Einfluss der Oxyfuel-Verbrennung in einem gestuften Kohlestaubbrenner. Die Untersuchungen wurden in einer kürzlich erbauten Testanlage durchgeführt. Die Verbrennung erfolgt in einem zunächst horizontal und dann vertikal verlaufenden Verbrennungsraum mit einer Nennleistung von 0,40 MWth. Die Vorgehensweise zur Untersuchung der Auswirkungen von Brennereinstellungen ist grundsätzlich in theoretische und experimentelle Betrachtungen unterteilt. In dem theoretischen Teil werden die relevanten Verbrennungskenngrößen auf Basis thermodynamischer Gleichgewichte berechnet und dienen als Grundlage zur Festlegung einiger wichtiger Betriebsbedingungen. Mithilfe eines kommerziellen CFD-Codes werden Simulationen einer nicht-reagierenden Strömung im Bereich des Brenners und Teilen des Feuerraums durchgeführt, um die Verteilung des Speisegases und Drallstärke im Brennernahbereich qualitativ bewerten zu können. Diese Vorhersagen werden zur Unterstützung der physikalischen Interpretationen der Daten und zur Berechnung der Drallzahl am Brenneraustritt angewendet. Während der experimentellen Untersuchungen wurden die Charakteristika der Diffusionsflammen zunächst in einer parametrischen Studie untersucht, um den Einfluss der Drallzahlen für drei verschiedene Werte sowie der Massenstromverhältnisse von sekundären zu tertiären Strömen auf die gesamte Verbrennung auszuwerten. Der zweite Teil des Testprogramms enthielt detaillierte Messungen innerhalb der Flamme für ausgewählte Betriebspunkte. Als Referenz diente die Luftverbrennung; insgesamt wurden vier Oxyfuel-Flammen untersucht. Messungen der lokalen Gastemperatur, der Gaszusammensetzung und des Strahlungswärmeaustauschs wurden mit standardisierten, wassergekühlten Messsonden insbesondere im Nahbrennerbereich durchgeführt. Der O2-Anteil vor dem Brenner wurde bei 31 Vol.-% gehalten und auf Grundlage der gleichen adiabatischen Flammentemperatur wie bei luftgefeuerter Verbrennung definiert. Messungen innerhalb der Flamme zeigten, dass die Verteilung der einfallenden Wärmestrahlung entlang der Flammenlänge nur geringfügig verändert ist, was darauf schließen lässt, dass die Festlegung des O2-Anteils für die Oxyfuel-Verbrennung passend gewählt wurde. Die Flammenstabilisierung erwies sich als stark abhängig vom O2-Anteil im Primärstrom, der Speisegas-Verteilung zwischen den sekundären und tertiären Zuführungen und der Drallstärke. Typ 1 Flammen mit einem stöchiometrischen Verhältnis von 1,17 wurden unter Luft- und Oxyfuel-Bedingungen erzeugt und detailliert untersucht. Aus detaillierten Untersuchungen der Strömungsmuster und Flammenstrukturen ergaben sich Hinweise auf eine radiale Flammenschichtung mit schrittweiser O2-Entmischung in dem zentralen Kohlejet. Die Erhöhung der Drallzahl und des Verhältnisses von Sekundär- zu Tertiär-Strömung verbessert die Vermischung der Kohlepartikel untereinander und erhöht die Temperaturen in der Nähe des Brenners. Eine bemerkenswerte Reduzierung der Temperaturen auf der Flammenachse wurde unter Oxyfuel-Bedingungen beobachtet. In der gleichen Region wurden höhere CO-Konzentrationen als mögliche Folge der CO2-Dissoziation und/oder der Vergasungsreaktion mit Wasserdampf und CO2 beobachtet. Sehr niedrige CO-Konzentrationen am Feuerraumaustritt, die einem hohen Partikelausbrand zugeordnet werden, zeigen an, dass Oxyfuel-Bedingungen hohe Wirkungsgrade für Typ 1 Flammen nicht verhindern. Obwohl die SO2-Konzentrationen bei Oxyfuel-Bedingungen höher waren, waren die Emissionsraten sehr ähnlich, was darauf hinweist, dass die SO2-Emissionen ausschließlich vom Schwefelgehalt der Kohle abhängig sind. Die aus der Parameteruntersuchung sowie Messungen in der Flamme erhaltenen experimentellen Daten deuten darauf hin, dass ein großes Potenzial zur NO-Reduktion durch die Flammenaerodynamik für die Oxyfuel-Verbrennung besteht. Die Experimente zeigten, dass die gestufte Zufuhr der Gasströme in einen Brenner eine effektive Technik zur Verbesserung der Flammenschichtung in brennstoffreiche und brennstoffmagere Zonen ist. Insbesondere die Kombination von hohem Drall und hohem Verhältnis von Sekundär- zu Tertiär-Strömung resultierte letztendlich in eine signifikante NO-Reduktion

    California Methanol Assessment; Volume II, Technical Report

    Get PDF
    A joint effort by the Jet Propulsion Laboratory and the California Institute of Technology Division of Chemistry and Chemical Engineering has brought together sponsors from both the public and private sectors for an analysis of the prospects for methanol use as a fuel in California, primarily for the transportation and stationary application sectors. Increasing optimism in 1982 for a slower rise in oil prices and a more realistic understanding of the costs of methanol production have had a negative effect on methanol viability in the near term (before the year 2000). Methanol was determined to have some promise in the transportation sector, but is not forecasted for large-scale use until beyond the year 2000. Similarly, while alternative use of methanol can have a positive effect on air quality (reducing NOx, SOx, and other emissions), a best case estimate is for less than 4% reduction in peak ozone by 2000 at realistic neat methanol vehicle adoption rates. Methanol is not likely to be a viable fuel in the stationary application sector because it cannot compete economically with conventional fuels except in very limited cases. On the production end, it was determined that methanol produced from natural gas will continue to dominate supply options through the year 2000, and the present and planned industry capacity is somewhat in excess of all projected needs. Nonsubsidized coal-based methanol cannot compete with conventional feedstocks using current technology, but coal-based methanol has promise in the long term (after the year 2000), providing that industry is willing to take the technical and market risks and that government agencies will help facilitate the environment for methanol. Given that the prospects for viable major markets (stationary applications and neat fuel in passenger cars) are unlikely in the 1980s and early 1990s, the next steps for methanol are in further experimentation and research of production and utilization technologies, expanded use as an octane enhancer, and selected fleet implementation. In the view of the study, it is not advantageous at this time to establish policies within California that attempt to expand methanol use rapidly as a neat fuel for passenger cars or to induce electric utility use of methanol on a widespread basis

    Accident Generated Particulate Materials and Their Characteristics -- A Review of Background Information

    Get PDF
    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of the amount of radioactive particulate material initially airborne (source term) during accidents. Pacific Northwest Laboratory (PNL) has surveyed the literature, gathering information on the amount and size of these particles that has been developed from limited experimental work, measurements made from operational accidents, and known aerosol behavior. Information useful for calculating both liquid and powder source terms is compiled in this report. Potential aerosol generating events discussed are spills, resuspension, aerodynamic entrainment, explosions and pressurized releases, comminution, and airborne chemical reactions. A discussion of liquid behavior in sprays, sparging, evaporation, and condensation as applied to accident situations is also included

    An optical investigation of air particle flows.

    Get PDF
    This thesis is a fundamental study of air-particle flow fields where the experimental parameters are characteristics of coal-fired electricity generating stations. The optical flow field measurement technique Particle Image Velocimetry (PIV) was adapted to study the particle flow fields and, in addition to the velocity vector map, particle concentration information was obtained. On phenomenon under investigation was the formation of ropes (high density ribbons of pulverised coal) in a small scale model of the pneumatically driven pulverised fuel transport lines of coal-fired power staions. The main findings of the study were that ropes form in bends and, when in contact with the bend wall, ropes are slowed by frictional forces. After they leave the bend, ropes fall throught he main airflow, maintaining their coherence. If the length of horizontal pipework is sufficiently long, the ropes will form a deposit. The Froude number is the relevant scaling parameter for the deposit's equilibrium position since the dominant influence on this position is the distance, L(f,s), for the rope to slow to zero when it is travelling along the bottom of the duct. The equilibrium position of the deposit, for a given Froude number is dependant upon the air-to-particle ratio: the higher this ratio then the further downstream the deposit. The factors influencing particle jet dispersal were investigated in view of their relevance to the coherence of the ropes. This study is also of relevance to the behavior of coal burner systems where an air-coal mixture is injected into a complex, usually swirling, airflow. The broad conclusions of the experimental results are as follows: 1. For a given particle loading and background velocity, the behavior trends of air-particle jets issued into a background airflow at velocities comparable to the mainstream values are similar to the theoretical description of singlee-phase jets which was derived by Squire and Troucer (1944). These general trends are as follows: (a)As the issuing velocity of the jet increases, its concentration half-width increases. (b)As the issuing veloccity of the jet increases, the rate of decrease of the centre-line velocity decreases, almost linearly with injection velocity. 2. For a given jet velocity, the higher the air-particle loading of the jet, the less the jet disperses and the less rapid the acceleration of the jet. 3. For a given relative velocity ratio between the jet and the background airflow, the higher the background airflow velocity, the more the jet disperses, the greater the rate odd acceleration of the jet and the more uniform the cross-sectional velocity profile
    corecore