187 research outputs found

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    System for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard visual relative localization

    Get PDF
    A complex system for control of swarms of micro aerial vehicles (MAV), in literature also called as unmanned aerial vehicles (UAV) or unmanned aerial systems (UAS), stabilized via an onboard visual relative localization is described in this paper. The main purpose of this work is to verify the possibility of self-stabilization of multi-MAV groups without an external global positioning system. This approach enables the deployment of MAV swarms outside laboratory conditions, and it may be considered an enabling technique for utilizing fleets of MAVs in real-world scenarios. The proposed visual-based stabilization approach has been designed for numerous different multi-UAV robotic applications (leader-follower UAV formation stabilization, UAV swarm stabilization and deployment in surveillance scenarios, cooperative UAV sensory measurement) in this paper. Deployment of the system in real-world scenarios truthfully verifies its operational constraints, given by limited onboard sensing suites and processing capabilities. The performance of the presented approach (MAV control, motion planning, MAV stabilization, and trajectory planning) in multi-MAV applications has been validated by experimental results in indoor as well as in challenging outdoor environments (e.g., in windy conditions and in a former pit mine)

    An Aerial Robotics Investigation into the Stability, Coordination, and Movement of Strategies for Directing Swarm and Formation of Autonomous MAVs and Diverse Groups of Driverless Vehicles (UGVs)

    Get PDF
    This study will discuss the matter of movement communication and preparation of tight configurations of land & flying robots. Remotely Operated Cars (UGVs) and Unmanned Aerial Vehicles (UAVs), in specific Micro Aerial Vehicles (MAVs), would be used to fix circumstances where a creation of UGVs and UAVs, in specific Micro Aerial Vehicles (MAVs), should counteract their velocity and direction to finish a mission of traffic sequence to a targeted area. The motion planning and stabilisation strategy given here is a useful tool for deploying closely collaborating robot teams including both outdoor and indoor settings. The installation of large groups of Micro Aerial Vehicles (MAVs) in a legitimate (indoor and outdoor) environment without the use of auxiliary positioning applications (such as Vicon or GPS) is indeed a natural development in the area of autonomously flying systems. Stability, control, and trajectory planning techniques for guiding swarm or configurations of unmanned MAVs, as well as diverse groups with Unmanned Ground Vehicles (UGVs) operating alongside MAVs, will be discussed in greater detail. These approaches discussed all are designed for the use of inter squads in true complex scenarios even without necessity for worldwide translation or motion capture systems, as they are predicated on board optical comparative localisation of single MAVs. This multi - objective optimisation being an enabler for the introduction of swarming of tiny autonomous drones beyond the labs with equipment for precise robot positioning. Model Predictive Control (MPC) is being used to address a formations to goal territory issue, and the form drive idea is based on a simulated approach. The Particle swarm optimization approach is utilised for digital leader trajectories planning, as well as control and stabilisation of follows (MAVs and UGVs). The proposed technique could be tested in the future using a range of simulation and practical tests

    WhyCon: an efficient, marker-based localization system

    Get PDF
    We present an open-source marker-based localization system intended as a low-cost easy-to-deploy solution for aerial and swarm robotics. The main advantage of the presented method is its high computational efficiency, which allows its deployment on small robots with limited computational resources. Even on low-end computers, the core component of the system can detect and estimate 3D positions of hundreds of black and white markers at the maximum frame-rate of standard cameras. The method is robust to changing lighting conditions and achieves accuracy in the order of millimeters to centimeters. Due to its reliability, simplicity of use and availability as an open-source ROS module (http://purl.org/robotics/whycon), the system is now used in a number of aerial robotics projects where fast and precise relative localization is required

    MRS Drone: A Modular Platform for Real-World Deployment of Aerial Multi-Robot Systems

    Full text link
    This paper presents a modular autonomous Unmanned Aerial Vehicle (UAV) platform called the Multi-robot Systems (MRS) Drone that can be used in a large range of indoor and outdoor applications. The MRS Drone features unique modularity with respect to changes in actuators, frames, and sensory configuration. As the name suggests, the platform is specially tailored for deployment within a MRS group. The MRS Drone contributes to the state-of-the-art of UAV platforms by allowing smooth real-world deployment of multiple aerial robots, as well as by outperforming other platforms with its modularity. For real-world multi-robot deployment in various applications, the platform is easy to both assemble and modify. Moreover, it is accompanied by a realistic simulator to enable safe pre-flight testing and a smooth transition to complex real-world experiments. In this manuscript, we present mechanical and electrical designs, software architecture, and technical specifications to build a fully autonomous multi UAV system. Finally, we demonstrate the full capabilities and the unique modularity of the MRS Drone in various real-world applications that required a diverse range of platform configurations.Comment: 49 pages, 39 figures, accepted for publication to the Journal of Intelligent & Robotic System

    Swarming of Unmanned Aerial Vehicles Using Indirect Information Exchange by Observation of the Workspace

    Get PDF
    Tato prĂĄce se soustƙedĂ­ na nĂĄvrh, implementaci a ověƙenĂ­ ƙídĂ­cĂ­ho systĂ©mu a systĂ©mu pro relativnĂ­ lokalizaci roje bezpilotnĂ­ch autonomnĂ­ch helikoptĂ©r v lesnĂ­m prostƙedĂ­. ZĂĄkladem lokalizačnĂ­ho systĂ©mu je ICP algoritmus. RojovĂœ ƙídĂ­cĂ­ systĂ©m je inspirovĂĄn Boidy a modifikovĂĄn pro lepĆĄĂ­ interakci s reĂĄlnĂœm prostƙedĂ­m. Implementace byla ověƙena v realistickĂ©m simulĂĄtoru Gazebo a pomocĂ­ Matlabu. Pƙístup, kterĂœ je uveden v tĂ©to prĂĄci, byl nĂĄsledně porovnĂĄn se současnĂœm systĂ©mem pro relativnĂ­ lokalizaci a navigaci v lese, kterĂ© pouĆŸĂ­vĂĄ skupina MultirobotickĂœch systĂ©mĆŻ na ČVUT v Praze.This thesis focuses on the design, implementation, and verification of a control system and relative localization approach for a swarm consisting of unmanned aerial vehicles in a forest environment. The core of the localization system is the ICP algorithm. The control system is based on Boids with modifications to adapt to the forest environment better. Implementation was verified in the realistic Gazebo simulator as well as in Matlab. The approach introduced in this thesis was also compared with the existing system for relative localization and navigation used in the Multi-Robot Systems group at Czech Technical University in Prague

    Coordination and navigation of heterogeneous MAV-UGV formations localized by a 'hawk-eye'-like approach under a model predictive control scheme

    Get PDF
    n approach for coordination and control of 3D heterogeneous formations of unmanned aerial and ground vehicles under hawk-eye-like relative localization is presented in this paper. The core of the method lies in the use of visual top-view feedback from flying robots for the stabilization of the entire group in a leader–follower formation. We formulate a novel model predictive control-based methodology for guiding the formation. The method is employed to solve the trajectory planning and control of a virtual leader into a desired target region. In addition, the method is used for keeping the following vehicles in the desired shape of the group. The approach is designed to ensure direct visibility between aerial and ground vehicles, which is crucial for the formation stabilization using the hawk-eye-like approach. The presented system is verified in numerous experiments inspired by search-and-rescue applications, where the formation acts as a searching phalanx. In addition, stability and convergence analyses are provided to explicitly determine the limitations of the method in real-world applications
    • 

    corecore