678 research outputs found

    Application of Swarm Intelligence in Disaster Management: A Review

    Get PDF
    The efficient use of Swarm Intelligence in Disaster management is discussed in this paper. Many lives are lost in Disaster affected area, the rescue team cannot reach everyone to rescue them this where Swarm Intelligence can be used. The Swarm Intelligence is a collective behavior to perform multiple task. SI can be used in searching and rescue operation in the disaster affected area, the swarm of Drones and bots deployed to locate the lives and give their exact location so that they can be rescued. The drones can analyze the area a give instruction to the ground bots. Obstacle avoidance can be used for clearing path for the rescue team to reach the location of the stuck person. Bots can combine together and work as one which increases their strength and may clear path. Swarm Intelligence is effective in many areas in Disaster Management

    Path Planning of Mobile Agents using AI Technique

    Get PDF
    In this paper, we study coordinated motion in a swarm robotic system, called a swarm-bot. A swarm-bot is a self-assembling and self-organizing. Artifact composed of a swarm of s-bots, mobile robots with the ability to connect to and is connect from each other. The swarm-bot concept is particularly suited for tasks that require all-terrain navigation abilities, such as space exploration or rescue in collapsed buildings. As a first step toward the development of more complex control strategies, we investigate the case in which a swarm-bot has to explore an arena while avoiding falling into holes. In such a scenario, individual s-bots have sensory–motor limitations that prevent them navigating efficiently. These limitations can be overcome if the s-bots are made to cooperate. In particular, we exploit the s-bots’ ability to physically connect to each other. In order to synthesize the s-bots’ controller, we rely on artificial evolution, which we show to be a powerful tool for the production of simple and effective solutions to the hole avoidance task

    DTTA - Distributed, Time-division Multiple Access based Task Allocation Framework for Swarm Robots

    Get PDF
    Swarm robotic systems, unlike traditional multi-robotic systems, deploy number of cost effective robots which can co-operate, aggregate to form patterns/formations and accomplish missions beyond the capabilities of individual robot. In the event of fire, mine collapse or disasters like earthquake, swarm of robots can enter the area, conduct rescue operations, collect images and convey locations of interest to the rescue team and enable them to plan their approach in advance. Task allocation among members of the swarm is a critical and challenging problem to be addressed. DTTA- a distributed, Time-division multiple access (TDMA) based task allocation framework is proposed for swarm of robots which can be utilised to solve any of the 8 different types of task allocation problem identified by Gerkey and Mataric´. DTTA is reactive and supports task migration via extended task assignments to complete the mission in case of failure of the assigned robot to complete the task. DTTA can be utilised for any kind of robot in land or for co-operative systems comprising of land robots and air-borne drones. Dependencies with other layers of the protocol stack were identified and a quantitative analysis of communication and computational complexity is provided. To our knowledge this is the first work to be reported on task allocation for clustered scalable networks suitable for handling all 8 types of multi-robot task allocation problem. Effectiveness and feasibility of deploying DTTA in real world scenarios is demonstrated by testing the framework for two diverse application scenarios

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify and analyse a prominent example of adaptive system: robot swarms equipped with obstacle-avoidance self-assembly strategies. The analysis exploits the statistical model checker PVesta

    Swarm intelligence and its applications in swarm robotics

    Get PDF
    This work gives an overview of the broad field of computational swarm intelligence and its applications in swarm robotics. Computational swarm intelligence is modelled on the social behavior of animals and its principle application is as an optimization technique. Swarm robotics is a relatively new and rapidly developing field which draws inspiration from swarm intelligence. It is an interesting alternative to classical approaches to robotics because of some properties of problem solving present in social insects, which is flexible, robust, decentralized and self-organized. This work highlights the possibilities for further research

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify, validate and analyse a prominent example of adaptive system: robot swarms equipped with self-assembly strategies. The analysis exploits the statistical model checker PVeStA

    Cooperative transport in swarm robotics. Multi object transportation

    Get PDF
    Swarm robotics is a research field inspired from the natural behavior of ants, bees or fish in their natural habitat. Each group display swarm behavior in different ways. For example, ants use pheromones to trace one another in order to find a nest, reach a food source or do any operation, while bees use dance moves to attract one another to the desired place. In swarm robotics, small robots attempt to mimic insect behavior. The robotic swarm group collaborate to perform a task and collectively solve a given problem. In the process, the robots use the sensors they are equipped with to move, communicate or avoid obstacles until they collectively do the desired functionality. In this thesis, we propose a modification to the Robotic Darwinian Particle Swarm Optimization (RDPSO) algorithm. In the RDPSO, robots deployed in a rescue operation, transport one object at a time to a desired safe place. In our algorithm, we simultaneously transport multiple objects to safety. We call our algorithm Multi Robotics Darwinian Particle Swarm Optimization (MRDPSO). Our algorithm is developed and implemented on a VREP simulator using ePuck robots as swarm members. We test our algorithm using two different environment sizes complete with obstacles. First implementation is for two simultaneous object transported but can be extended to more than two. We compare our new algorithm to the results of single RDPSO and found our algorithm to be 35 to 41 % faster. We also compared our results to those obtained from three selected papers that are Ghosh, Konar, and Janarthanan [1], TORABI [2], and Kube and Bonabeau [3]. The performance measures we compare to are the accuracy of transporting all objects to desired location, and the time efficiency of transporting all the objects in our new system

    Decentralized shape formation and force-based interactive formation control in robot swarms

    Full text link
    Swarm robotic systems utilize collective behaviour to achieve goals that might be too complex for a lone entity, but become attainable with localized communication and collective decision making. In this paper, a behaviour-based distributed approach to shape formation is proposed. Flocking into strategic formations is observed in migratory birds and fish to avoid predators and also for energy conservation. The formation is maintained throughout long periods without collapsing and is advantageous for communicating within the flock. Similar behaviour can be deployed in multi-agent systems to enhance coordination within the swarm. Existing methods for formation control are either dependent on the size and geometry of the formation or rely on maintaining the formation with a single reference in the swarm (the leader). These methods are not resilient to failure and involve a high degree of deformation upon obstacle encounter before the shape is recovered again. To improve the performance, artificial force-based interaction amongst the entities of the swarm to maintain shape integrity while encountering obstacles is elucidated.Comment: 6 pages, 10 figure
    corecore