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Abstract
Department of Computer Science and Engineering

Master of Science

Cooperative Transport in Swarm Robotics
Multi Object Transportation

by Aalaa I. Hamouda

Swarm robotics is a research field inspired from the natural behavior of ants, bees or
fish in their natural habitat. Each group display swarm behavior in different ways.
For example, ants use pheromones to trace one another in order to find a nest, reach
a food source or do any operation, while bees use dance moves to attract one an-
other to the desired place. In swarm robotics, small robots attempt to mimic insect
behavior. The robotic swarm group collaborate to perform a task and collectively
solve a given problem. In the process, the robots use the sensors they are equipped
with to move, communicate or avoid obstacles until they collectively do the desired
functionality. In this thesis, we propose a modification to the Robotic Darwinian Par-
ticle Swarm Optimization (RDPSO) algorithm. In the RDPSO, robots deployed in a
rescue operation, transport one object at a time to a desired safe place. In our algo-
rithm, we simultaneously transport multiple objects to safety. We call our algorithm
Multi Robotics Darwinian Particle Swarm Optimization (MRDPSO). Our algorithm
is developed and implemented on a VREP simulator using ePuck robots as swarm
members. We test our algorithm using two different environment sizes complete
with obstacles. First implementation is for two simultaneous object transported but
can be extended to more than two. We compare our new algorithm to the results of
single RDPSO and found our algorithm to be 35 to 41 % faster. We also compared
our results to those obtained from three selected papers that are Ghosh, Konar, and
Janarthanan [1], TORABI [2], and Kube and Bonabeau [3]. The performance mea-
sures we compare to are the accuracy of transporting all objects to desired location,
and the time efficiency of transporting all the objects in our new system.
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Chapter 1

Introduction

Swarm robotics is a field of robotics in which multiple robots are coordinated in a
decentralized and distributed manner as defined by Navarro and Matía [4]. Swarm
robotics takes inspiration from the social activities of insects in nature like ants,
bees, .. etc. In nature, biological lifeforms can demonstrate this swarming behav-
ior in a different ways to meet their needs. Take for example the ant, which uses
pheromones to mark a path for other members of their colony to follow to a food
source, or back to the nest. The highlighted path will continue to get stronger and
stronger as each ant in turn will continue to mark the path. Once the path is no
longer needed, the ants simply stop marking it, and the pheromones simply vanish
along with the path. Bees, on the other hand, use dancing to attract the attention of
other bees, drawing them to the source of food. The dancing, known as a waggle
dance , serves as a way to of calling and recruiting other bees to help secure the food
source. Swarm robotics borrows the concepts found in these biological behaviors,
replacing insects with small robots.

In a swarm robotics system, the environment consists of an area where the robots
explore, obstacles to navigate around, and a target. The aim of swarm robotics is
to solve a problem collectively by communicating effectively about the environment
in which the robots find themselves in. The task can be as simple as exploring the
available area or as complex as interacting with or avoiding the objects in the envi-
ronment with the goal of solving a problem. There are many different applications
for swarm robotics, from search and rescue and military application, mining and
gas exploration to modern medicine with advancements in nanotechnology as dis-
cussed by Hasan [5].

One application of particular importance and the focus of this thesis is search and
rescue. During search and rescue operations there may be certain scenarios where
the risk of sending rescuers into an unstable environment may be too dangerous
and carry the potential of further loss of life. In this circumstances, special search
and rescue robots could be deployed that are governed by swarm robotics. The
robots would work collectively navigating around the environment, avoiding im-
pediments to locate survivors. Once a survivor is located, the locating robot would
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send a recruiting signal to other robots, and then when the number of robots is suf-
ficient for the transportation task, the transporting process would begin to move the
survivor to safety. This would be a valuable option for search and rescue teams to
have at their disposal in times of need.

In this thesis, we will tackle the area of transporting multi objects at a time in the
field of swarm robotics. The focus of this area is for the robots to transport multiple
objects at the same time using a collective of similar robots which will perform the
task in unison. In similar research studies, there are multiple techniques proposed
and implemented for transporting an object from its current location to a destination
defined by the application. Transporting more than one object at a time will result
in a reduction in the time needed to finish the given task as long as it can be accom-
plished without a risk to the efficiency of transporting the objects themselves.

Swarm robotics has the potential to provide many advantages over other similar
systems to solve problems. These advantages, summarized below, will be discussed
in more detail throughout this thesis. They are as follows:

• Parallelizable: the ability for multiple robots to perform tasks in parallel in
order to reach a specific goal.

• Scalable: the decentralized and distributed nature of swarm robotics allows for
the entire system to scale as needed. The addition or removal of any number
of robots does not harm the overall system.

• Robustness: no single point of failure, because the tasks are shared across all
robots, the loss of one or more robots does not affect the system.

• Reusable: the presence of multiple small functions in the system that can be
reused to perform bigger tasks in the system.

• Economical: the use of simple robots in a swarm system provides significant
cost savings and fault tolerance when compared against larger more complex
robotics systems.

The main contributer of our thesis is in two parts, the first part in the recruitment
technique and the second part in transporting multiple objects at the same time. As
for the first part, the recruitment process that we succeeded in implementing recruits
two group of robots for two different targets. In this process, each group is only con-
cerned with the target they are recruited to transport. As for the second part, the
multi object transportation that we succeeded to conduct was successful due to the
success of the recruitment process and that every target has its own path with no
overlap between the two targets.
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1.1 Problem Definition

The primary focus of our thesis is in the area of cooperative transportation with the
aid of swarm robotics. Cooperative Transportation, a relatively new field, is simply
defined by Czaczkes and Ratnieks [6] as “multiple individuals simultaneously mov-
ing an object”. When applied to swarm robotics the idea is that a group of robots,
either similar or varied in architecture, work collectively to transport a specific ob-
ject from one place to another, all while performing various tasks like judging dis-
tance and speed over time, and object avoidance. While researching similar projects,
which will be discussed in detail in Chapter 2, various ways of transporting an ob-
ject were found. These ways included pushing or pulling from either the front of
the object or its back. This would be done by having the recruited forming a circle
around the object and then once in position begin the process of transporting the
object.

Communication between the robots is essential for the transportation process to be
effective. The most effective way of communication found, and the one used in
this thesis, is where one the discovering robot would send out recruitment signals
which would include the location of the object and all responding robots would be
recruited to assist in the transport process. Another method would involve the re-
cruiting robot to travel back to the home of the robots and start the recruiting process
from there. Many of the other projects researched only dealt with single object trans-
portation, and did not address the challenges of multi object transportation, leaving
the area open to new discovery.

In nature, insect colonies, like ants and bees, have long since perfected the art of co-
operative transportation and one would be more likely to observe instances of these
insects moving more than one object at time instead of moving a single object. The
coordination between these subject is highly complex and allows them to speed the
process of food collection, nest building or any other process required by the colony.
So, since the whole robotics swarm was inspired from nature swarm, and the trans-
porting of only one object has already been explored and multiple techniques that
help in performing the transportation arose, we decided to explore the transporta-
tion of multiple objects at a time, and hence, starting the exploration with the aid of
more than one object to be transported at a time.

There are many challenges to multi-object transportation that this thesis addressed
through its development and will be more illustrated in 5. Many of these challenges
still pose complex problems for single-object transportation, for example, robot co-
ordination to move or transport an object. Of course there are some new challenges
that will arise due to introduction of adding multiple transport objects that need
to be transported at the same time. The communication within 2 or more teams
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of robots transporting multiple objects in unison. Each robot on the separate team
must only communicate with other robots of the same team. Any communication
with robots outside of the team would cause issues with navigation, object avoid-
ance, and/or the ability of the robot to gauge how much to push or pull the object.
The robots must see only the object that they will transport and all other objects (in-
cluding other robots) as obstacles to avoid otherwise the confusion could cause a
failure across the entire team of robots.

Some of the other challenges beyond that which are found in the transportation case
are to do with robot movement, multi-robot coordination, order of object transporta-
tion, robot recruitment, choosing the correct recruitment technique, synchronization
between robots while transporting the object to ensure the object reaches its desti-
nation accurately, differentiating different objects to be transported and once an ob-
ject is detected, the robot must start the recruitment phase and transportation phase
without checking other near objects, each robot to be able to differentiate which
group of robots it belongs to, to avoid any confusion while recruiting and trans-
porting, and of course, obstacles avoidance to not hit any other objects or obstacles
scattered in the environment. Again all these challengers are conquered along the
way. These challenges as well as others will be addressed in this thesis.

The primary problem discussed in this thesis will focus on simultaneous multiple
objects transportation. As discussed earlier, all swarm species in nature can han-
dle multi-object transportation. In our thesis, we will apply simultaneous multiple
objects transportation on a well known problem in swarm systems, search and res-
cue application. Search and rescue applications are concerned with saving victims.
A group of robots can be deployed in an emergency situation to help search and
rescue victims, robots are the best candidate for such application as losing robots
unlike losing people can be acceptable in these situations. Another application for
transporting multiple objects at a time is arranging warehouse products, again by
scattering multiple robots to locate the objects/products to be stored and transport
them to the storage places. We proposed a solution for this problem in Chapter 3.

The thesis document is divided as follows. Chapter 2 provides a literature review
explaining all approaches found in the literature regarding both swarm robotics and
cooperative transport. Our proposed solution along with the experimental environ-
ment to be used in this thesis are described clearly in Chapter 3. Finally, Chapter
4 concludes our thesis and presents our future work. As for our platform deter-
mination, Appendix A includes all the needed details regarding our comparison to
support our choices for the platforms. Appendix B contains our implemented algo-
rithm brief description along with its pseudo code.
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Chapter 2

Literature Review

2.1 Swarm Robotics

Swarm robotics is inspired from nature as swarm in general represents a group:
swarm of ants, bees, fish ... etc as seen in Figure 2.1 adopted from Tan and Zheng
[7]. So, swarm robotics is based on how a swarm of robots behaves leading to new
potentials. Swarm in natural can be seen in ants; how ants behave and communi-
cate together using pheromones to reach food source; in bees; how bees use dancing
techniques to get attention of other bees to a potential food source in the area; in fish;
how fish communicate together and form a shape; in birds; how birds communicate
and start migration from one place to another. Swarm robotics coordinates the be-
havior of a group of robots to perform a specific task taking into consideration some
complications depending on the environment. This is achieved through controlling
both the communication and the interaction between robots.

FIGURE 2.1: Biological swarm in nature adopted from Tan and Zheng
[7]

Ant colonies are a good example of swarm as the ants start the searching process for
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food by exploring the environment around them; they start moving randomly cre-
ating new paths along the way using their pheromones. Only the paths that lead to
food source gets more and more pheromones due to ants using them over and over
again leaving more and more pheromones traces behind them. As for the rest of the
paths that lead to nothing no more ants are going through them so the pheromones
traces keep fading away until these paths no longer exist.

Another good example of swarm is the bees as they start also by exploring the envi-
ronment around them searching for food. When a patch of flowers is found, the bee
starts dancing as shown in Figure 2.2 adopted from Seeley, Visscher, and Passino [8]
to let other bees know that it found the flowers and so other bees start approaching
the patch of flower. The bees use this dance to communicate with other bees the
distance, and direction of the patches of flowers, the water sources or the new hive
locations. The bee dance is known as the waggle dance, the direction the bee dances
represents the movement respectively with the hive and the distance from the hive
to the found source is represented by the duration of the dance.

FIGURE 2.2: Bee Dance adopted from Seeley, Visscher, and Passino
[8].

Humans also apply the swarm techniques in a form known as teamwork, where a
group of people works together to perform a specific task. For an example, consider
a software company with a website as a project, it all starts with a group of software
developers working together to launch the website, they start dividing tasks around
them where some smaller teams are being performed, each team is assigned part of
the tasks to deliver the whole project, a group takes the frontend part, another group
works on the backend part, another group handles the user interface, group for the
documentation and so on.

Swarm robotics can be achieved through multiple techniques. Either all robots have
the same functionality. This means that any robot in the swarm is capable of per-
forming any of the small tasks to reach the goal task. In this technique, if any point in
the system, which is represented by a robot fails, still the big goal will be reached, as
any other robot will perform its task. Another technique is to divide the big swarm
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of robots to smaller groups where each group has the functionality of one small task
of the big goal. This means that each group depends on the other and if there was a
failure in one group the task will not be performed. Hence, the big goal will not be
reached. But this is easily overcome by placing multiple robots in the group, i.e. no
group consists of only one robot.

2.1.1 Swarm Robotics Applications

Swarm robotics is being explored since years now, during these years multiple prob-
lems or can be called applications have been solved with the aid of swarm robotics,
from these problems/applications are aggregation, pattern formation, self assem-
bly, chain formation, foraging, dispersion, coordinated movement, collective explo-
ration, navigation and cooperative transport. In this section, we will discuss briefly
each application.

Foraging

Foraging, by humans or animals, is the act of searching for and collecting food for
storage or consumption. Robot foraging is defined more broadly as searching for
and collecting any objects, then returning those objects to a collection point or target
location.

In robotics, foraging is the process of searching for the nearby objects and return to
a specific goal place with the maximum number of objects. It is inspired from ants
searching around the nest to maximize the amount of food returned.

Foraging is important for several reasons: firstly, it is a metaphor for a broad class of
problems integrating exploration, navigation and object identification, manipulation
and transport; secondly, in multi-robot systems foraging is a recognized problem
for the study of robot-robot cooperation, and thirdly, many actual or potential real-
world applications for robotics are instances of foraging robots, for instance clean-
ing, harvesting, search and rescue, land-mine clearance or planetary exploration.

Aggregation

The attempt to collect all the robots together, or make them come near one another is
known as aggregation as shown in Figure 2.3 in Trianni, Groß, Labella, et al. [9]. This
is an important problem as it is considered the first step needed in other problems,
since collecting the robots together to perform a task is the aim of swarm robotics.
The main two approaches in dealing with the aggregation problem are probabilistic



Chapter 2. Literature Review 8

finite state machine (PFSM) and evolutionary algorithms.

FIGURE 2.3: Static and dynamic aggregation example.

Pattern Formation

This problem is related to forcing the robots to collectively form a specific shape
while preserving a specific distance between one another as shown in Figure 2.4 in
Brambilla, Ferrante, Birattari, et al. [10]. The shape is determined before starting
the experiment and depending on some local information regarding the robots’ po-
sitions. The main approach in dealing with such problem is virtual physics based
design.

FIGURE 2.4: Pattern formation example.

Self Assembly

In this problem robots tend to self-assemble meaning attach to one another to form
a specific pattern that will make solving the issue easier as shown in Figure 2.5
adopted from Brambilla, Ferrante, Birattari, et al. [10] . As an example, robots get
attach to one another in the form of a straight line to pass a hole on their way. This
problem is usually divided into two parts one related to robots assembling, which is
called morphogenesis, and the second part is related to controlling the new-formed
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shape. The main approach to tackle this problem with its two parts is probabilistic
finite state machine (PFSM), while the second part of the problem can be also tackled
using artificial evolution.

FIGURE 2.5: Self assembly example.

Chain Formation

The robots communicate together to form a chain as shown in Figure 2.6 adopted
from Brambilla, Ferrante, Birattari, et al. [10] that can be used after that as an identi-
fication path to the object or can be used in surveillance. The three main approaches
for this are probabilistic finite state machine (PFSM), virtual physics based design
and artificial evolution.

FIGURE 2.6: Chain formation example.

Dispersion

This is the other side of aggregation. In this problem, the robots spread out in the
environment to cover the maximum area possible and still maintaining some sort
of communication between one another. This is used in surveillance. Tackling this
problem can be performed using either probabilistic finite state machine or artificial
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evolution.

Coordinated Movement

Movement of a group of robots to conduct a specific task, while maintaining robots’
communication, no collision between robots and no collision with obstacles in the
environment is shown in Figure 2.3 adopted from Brambilla, Ferrante, Birattari, et al.
[10]. This problem is considered the basic block for many other problems, as robots’
movement is the starting point of performing any task related to swarm. The ap-
proaches available to deal with such problem are virtual physics based design and
artificial evolution.

FIGURE 2.7: Coordinated movement example.

Collective Exploration

Spreading the robots all over the environment in order to search for something or to
locate something is what is known as collective exploration as shown in 2.8 adopted
from Brambilla, Ferrante, Birattari, et al. [10]. Robots still maintain communication
between one another to communicate back the object in need position, also robots
move seamlessly in the environment without colliding with each other or with any
obstacle. The approach in literature that addresses such problem is virtual physics
based design.

Navigation

After the robots are done with searching or exploring the environment, one task
they can do is construct a path to an object. An example is bomb diffusion problem.
In this problem, bombs are scattered in the environment, robots start by searching
for the bombs, and once a robot detects a bomb it communicates its location to the
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FIGURE 2.8: Collective exploration example.

nearby robots constructing a path through robots from the bomb position to the hu-
man.

Collective Transport

This problem is the one that is going to be tackled in this thesis. Cooperative trans-
port is the problem of moving an object from one place to another with the help of a
swarm of robots as shown in Figure 2.9 adopted from Brambilla, Ferrante, Birattari,
et al. [10, postnote]. This approach is dealt with in literature using probabilistic finite
state machine (PFSM) or artificial evolution. Cooperative transport is going to be
discussed in details in the next point.

FIGURE 2.9: Collective transport example.

2.1.2 Swarm Robotics Challenges

Constructing swarm robotics systems is a very challenging task, as this system re-
quires taking into consideration multiple criteria. One of the major challenges is
maintaining communication between robots. Robots should always sustain a com-
munication channel to keep exchanging information about robots’ status, obstacles’
positions and all other information regarding the surrounding environment. An-
other challenge is concerned with the robot movements; there are difference types
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of movements regarding robots. The starting movement where each robot moves
without taking into consideration any movement from other surrounding robots,
and this can be called the exploration movement. The movement when the target
is found, during this movement the robot tries to collect nearby robots to perform
the task needed together, this can be called the searching movement. The movement
where all robots together do the assigned task and this movement can be called co-
ordinated movement. The mentioned challenges are crucial as they represent the
fundamental stages in constructing the system.

The relationship between the robots is another challenge that should be considered.
This relationship can be either homogeneous or heterogeneous. Homogeneous sys-
tems are the systems in which all robots have the same functionality installed. They
all do the same task. All robots are duplicated from one another. While hetero-
geneous systems are the systems in which robots are subdivided into two or more
groups, each group is assigned a different task than the other groups but collectively
all groups perform the final task. Selecting the best type of relationship depends on
the task to be performed, the number of available robots, and the surrounding envi-
ronment.

Another thing to be taken into consideration is the type of algorithm to be used to
perform the task. The two main categories under which the algorithms lay are cen-
tralized algorithms and decentralized algorithms. Centralized algorithm is where
there is a main station that transmits and receives from the robots. This station is
responsible for all type of communication between the robots, saves all the received
information from the robots regarding their positions, obstacles and so on. Also,
exchange between robots if one of them reached the goal, or if one of them needs
others to help with performing the task and so on.

As for the decentralized algorithm, in this algorithm each robot can communicate
with other robots without the need for a station. Each robot stores the information
regarding its position and receives information regarding the robots around it. Each
robot can signal the other surrounding robots if it needs help performing the re-
quired task and is capable of transmitting obstacles’ positions to nearby robots that
retransmit it to other robots. At the end, in the decentralized algorithm, each robot
or group of robots is a complete entity that can perform all tasks. Selection between
centralized and decentralized algorithms is also dependent on the type of task to be
performed, the resources available, the number of robots and the surrounding envi-
ronment.

Another challenge ahead is the configuration of the robots, this configuration is the
robots’ way to perform a task that can’t be performed by only one robot. This con-
figuration can either be self-assembly or self-reconfigurable. Self-assembly is where
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a group of robots perform a task in which each robot can’t do it alone, so they for
example attach to one another forming one big robot that can perform the task, then
they get detached in to individual robots again to continue remaining functionali-
ties. On the other hand, self-reconfigurable is where a group of robots can attach to
one another forming different configurations depending on what is needed or de-
pending on the functionality. For an example, robots need to go from one place in
the environment to another place separated by a ramp, they form a straight line to
help push one another to that place, if the functionality is to transport an object so
they form a circle around the object to transport it and so on. After concluding the
task, they detach from one another and continue other tasks in the system.

2.1.3 Swarm Robotics Characteristics

All these advantages make swarm robotic systems highly considered in solving
problems. After discussing the previous aspects of swarm robotics and knowing the
challenges and advantages of such systems. It’s time now to talk about the character-
istics that make these systems so appealing to solve problems. These characteristics
are autonomous, decentralization, homogenous, flexible, sensing and communica-
tion, and simple and are discussed in Tan and Zheng [7],Sahin, Girgin, Bayindir, et al.
[11],Brambilla, Ferrante, Birattari, et al. [10],Mohan and Ponnambalam [12],Navarro
and Matía [4],Barca and Sekercioglu [13], and McCreery and Breed [14].

Autonomous is one property of the robots included in the system. They don’t de-
pend on one another to perform any task. Any robot in any position in the system
will be able to function and finish the task assigned. This can be understood by re-
calling the example of robots mentioned in re-usability advantage. Each robot does
not know what other robots around do, it just functions according to the situation.
If it was able to locate an object then its function now is to propagate to others that
the object is found and communicate the object’s location, if it got the message of an
object available along with where it is located and the robot is near to the communi-
cated position so it will head to the object to help other near robots in transporting
the object, if the path to transport the object is not clear yet and the robot in searching
state while other robots are moving the object then the robot might start looking for
the best path to reach target position and send it to other robots.

Decentralization was discussed in terms of algorithms while talking about the chal-
lenges in swarm robotics and the difference between it and centralized algorithms.
Robots can benefit from this property to speed up finishing the task, as the robots
don’t need to wait for a central control to communicate the action to be done, as this
action is already defined within the logic of the robot as mentioned multiple times
in this thesis, each robot performs according to its position in the environment or
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the system, it decides the needed functionality at this point and act upon it with-
out returning to a centralized control system. Decentralization helps maintain the
scalability. Going back to scalability it is the act of adding or removing a robot to or
from the system without causing any malfunction in the system, so it is obvious that
decentralization helps with it.

Homogeneous was also explained with its complement algorithm heterogeneous.
Homogeneous in swarm is due to all robots being the same. All robots have the
same capabilities; they all have the same tasks assigned and they choose the task
needed according to what is faced in the environment. Homogeneous is important
as it maintains the robustness and the usability of swarm systems. Recalling robust-
ness and usability, they both depend on robots being exact copy. At the end of the
day any robot can perform all the functionalities required by the system and any
robot can replace any faulty robot in the environment.

Flexibility in swarm is due to that multiple small robots that can perform any task in
the system and in the same time with a little more hardware and with some tweak-
ing to the software code, they can perform another task. Also, robots must have the
flexibility to change a bit according to what they face in the environment. If we can
recall the example in self-reconfigurable robots, according to the environment and
the needed task the robots choose either the straight-line configuration or the circle
configuration. This is one way for flexibility in swarm. Another form of flexibility
is the one thing that was stated a lot through this thesis, which is the ability of each
robot to perform in any part of the environment and their ability to be exchanged
with one another without any disrupt to the system.

Local sensing and communication in swarm robotics system is one of the main prob-
lems in swarm due to having multiple robots and maintaining the communication
all the time for the system to be connected. This can be done in multiple ways, ei-
ther maintaining periodic communication by robots broadcasting their position and
some information regarding the environment every now and then, or using some
central station that adds a layer of communication between robots in broadcasting
information that makes sure robots are not overwhelmed with data, also there is a
way of making some robots like leaders to robots, these robots receives the informa-
tion all the time and passes this information to the group periodically and one more
way is robots always keep communicating with nearby robots only and by this the
whole environment is connected.

Simplicity of swarm systems comes from the fact that they are all similar robots, all
have the same functionalities, all have all tasks coded and they choose according to
surrounding environment, failure of any robot does not affect the task or the system
and addition of robots too is acceptable. Being that simple makes swarm systems a
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good choice for big problems. Simplicity of swarm also arises from the fact that it
takes big problems and divides it into multiple simple smaller ones. Solving mul-
tiple simple divided tasks make the system maintains its simplicity and makes the
big problem easier to handle and solve.

2.1.4 Swarm Robotics verses Similar Systems

In this section, we will discuss all available systems similar to swarm robotics sys-
tems, these systems are multi-robot systems, multi-agents systems and sensor net-
work systems. These systems are alike the swarm systems and can be mistaken to.
Also, they are always put in comparison with swarm systems and sometimes in con-
fusion when deciding which system to choose as they all are inspired from the nat-
ural swarm and they all try to make use of the cooperative nature of swarm systems.

Multi-robot systems as illustrated in Table 2.1 are systems with small robots popula-
tion that depend in robot control on centralized or remote algorithms. The system is
known to be usually homogeneous with an environment that can be either known or
unknown. The robots in such systems have the ability to move in the environment.
The disadvantages of such system are it has low flexibility and low scalability.

Sensor network systems as explained in Table 2.1 are characterized by fixed popula-
tion of robots, also depend on centralized or remote algorithms when dealing with
robot control. These systems are also homogeneous in their nature but the robots
don’t have the ability to move and explore the environment, as the environment for
such systems is a known environment. These systems have low flexibility but mod-
erate scalability.

Multi-agent systems; as described in Table 2.1; are characterized by small popula-
tion of robots. When it comes to robot control they depend on either centralized
or hierarchical or network algorithms. The environment is known to be either ho-
mogeneous or heterogeneous with rare ability for the robots to move around in the
environment, the environment in this system is a known environment. As for the
flexibility and scalability of these systems they are moderate in both.

As for swarm robotics systems and as obvious in Table 2.1, they are characterized
with great population of robots, depending in robot control on decentralized and
autonomous control algorithms as mentioned before in the characteristics of swarm
systems. These systems are homogenous system in unknown environment with the
full movement ability of the robot to explore and interact with the environment.
Finally, from their advantages is they are highly flexible and highly scalable which
was mentioned before along with the other mentioned advantages.
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TABLE 2.1: Swarm robotics systems versus similar systems.

Criteria Swarm
Robotics

Multi-Robot
Systems

Sensor Net-
work Systems

Multi-Agent
Systems

Population
Size

Great Range Small Fixed Small Range

Control Decentralized
and au-
tonomous

Centralized or
remote

Centralized or
remote

Centralized or
hierarchical or
network

Homogeneity Homogeneous Usually ho-
mogeneous

Homogeneous Homogeneous
or heteroge-
neous

Flexibility High Low Low Medium
Scalability High Low Medium Medium
Environment Unknown Known or un-

known
Known Known

Motion Yes Yes No Rare
Typical
Applications

Post disaster
relief
Military appli-
cations
Dangerous
applications

Transportation
Sensing
Robot football

Surveillance
Medical care
Environmental
protection

Net resources
management
Distributed
control

2.1.5 Swarm Robotics Advantages

The above-mentioned challenges are all important to be covered to help reach a sys-
tem of swarm robotics that is reliable and perform in a good way. This takes us to
a very important part, which is the advantages of swarm robotics; the reasons peo-
ple go through all the mentioned challenges and more to use such systems. These
advantages are parallelism, scalability, stability, robustness, reusable, being econom-
ical, and finally energy efficient and are discussed in Tan and Zheng [7],Sahin, Gir-
gin, Bayindir, et al. [11],Brambilla, Ferrante, Birattari, et al. [10],Mohan and Ponnam-
balam [12],Navarro and Matía [4],Barca and Sekercioglu [13], and McCreery and
Breed [14].

Parallelism is achieved as each swarm system contains large number of robots, by
dividing the number of robots into small groups each containing couple of robots
and each group is assigned one task in the system; dividing the big problem solved
by the system into small tasks; at the end, each group will solve one task resulting
in multiple tasks finished at the same time, hence, parallelism in finishing tasks. An-
other example of parallelism can be shown if the system is dealing with multiple
objects, each group of robots can be assigned to deal with one object say for example
transporting it, hence, parallelism in handling objects.

Scalability is the act of adding or removing a robot from or to any group resulting in
robots performing coherently without any problems. Scalability is reached as all the
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robots contain all the functionality in the system and they act according to the situ-
ation they are in. to give an example, assume the system is supposed to transport
an object in an environment, functions within such system can be divided to first
searching the environment to find the object and this can be done by one group, sec-
ond searching for the best path to reach the target position and this will be finished
by another group of robots and third pushing the object to transport it and this will
be done by another group. When the system starts, no roles are assigned. No robot
knows which group it will be in or what is the functionality it should do. So, decid-
ing the task will be done according to searching and finding the object. Conclusion
of this is any robot in the system can be in any group and will be able to perform any
of the three mentioned tasks seamlessly.

Stability is easy to explain. The system is stable, no matter what happens it will per-
form in a stable manner. Adding robots, removing robots, adding functionalities, or
removing functionalities, anything can happen and still the system will maintain its
stability. This is very important as unstable systems won’t be reliable and won’t be
considered in solving problems.

Robustness is the ability of the system to survive under any circumstances, as it is
not going to be affected by any external forces. It is going to keep performing after
adding some extra robots. It is not going to be affected by robots quitting. The func-
tionalities still will be executed. If a system starts with a specific number of robots
and as the system goes some robots start to malfunction due to any reason, the sys-
tem still maintains its functionality with the remaining robots. Also, adding more
robots won’t affect the system as they will merge in the system and help the already
available robots to perform the required tasks.

Reusability is accomplished due to the simple components of the swarm systems,
also, due to that all these components are an exact copy from one another. As each
robot can be reused for any functionality within the system since they are all pro-
grammed with the same code. To make this clearer, assume at the start of the system
we have robot 1 and robot 2 searching in the environment, robot 3 and robot 4 were
able to locate the object to be transported, robot 5 and robot 6 constructed the path
to target position and this task was finished successfully. After that all robots are in
searching phase, this time robot 2 and robot 5 located the object while robot 1 and 4
constructed the path to target position, leaving robot 3 and 6 in searching phase and
so on. Any robot can be reused in any task within the system.

Economical is a very important advantage in swarm robotics. Economical property
is represented in the cost of the project from one side and the other side is econom-
ical in finishing tasks. For the first side, constructing multiple small robots is much
cheaper than constructing one huge one. Small robots consist of small components
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that cost much less than components for a huge robot. As for the other side, swarm
robotics is economical as having this huge population of small robots makes them
perform the task more efficient than one single robot can.

Energy efficient is the last characteristic of swarm that will be discussed. Power is a
critical aspect in any system not only swarms systems, as it determines how long the
system will last. Energy in swarm systems is consumed in every movement and all
the time, as the robots don’t stop moving, even if they finished the task assigned they
return to searching state, but since the robots are so simple, their energy consump-
tion is not that high as the components used are simple small components. Most of
the energy consumption will be in the communication, as this must be maintained all
the time the system is alive, for all the robots to have knowledge of the surrounding
environment and have knowledge of around robots. But still with this communica-
tion overhead, swarm robots will perform much better energy wise than one single
robot executing the tasks.

2.1.6 Swarm Robotics Modeling Systems

Explaining what is there in literature regarding swarm robotics definition, chal-
lenges, advantages, characteristics and similar systems available, let’s head to the
next topic to be discussed in this thesis; which is swarm robotics modeling methods,
modeling the swarm system to know will it be able to solve the problem in hand or
not and with certain criteria as solving it only is not the purpose, it should be solved
fast and with high accuracy. Modeling methods can be discussed in various points
sensor based modeling, microscopic modeling and macroscopic modeling or there
is the alternative method to modeling which is using real robots and getting the ac-
curate results and compare them with the modeling results. Modeling of swarm
systems is done through many simulators available nowadays.

Sensor based modeling defines the main components of the system as the sensors,
the actuators and the objects in the environment, also defines the interactions be-
tween the robots and the interactions between the robots and the environment and
are modeled as easy and simple as possible. This method is widely used to build
more realistic swarm modeling systems, as the results of this method are in agree-
ment with the results of experimenting on real physical robots. Two main factors
should be taken into consideration while building such systems, simplicity and re-
alism. The modeling of all interactions must be done in the simplest way possible to
not alter the system speed. Also, realism factor should be done in way to maintain
the results similar to those conducted from the real robots.

Microscopic modeling is conducted as sensor based modeling on the robot level.
This model models the robots as entities, models the interaction between robot and
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robot, models the interaction between robots and the environment and models ev-
ery obstacle in the system. Everything is modeled as a separate entity. This way the
whole system is modeled through the small entities and also through the interac-
tions between the entities. The level of abstraction in microscopic modeling is very
an important metric as it determines the accuracy of the retrieved results. There are
three different levels of abstractions, the simplest level of abstraction, which reflects
the robots as point-masses, adding more complexity leads to the second level of
complexity, which assumes the environment as a 2D world with kinematic physics,
adding extra complexity leads to the third and final level of abstraction which con-
siders the environment as 3D world with dynamic physics. Microscopic modeling
is what is used by the majority of the known simulators that help simulate swam
robotic systems to help with obtaining the results.

Macroscopic modeling is conducted on swarm level not robot level. This method is
the opposite of the microscopic method, where the whole swarm is modeled as one
entity. The individual parts consisting the system such as the robots, the objects and
the obstacles are all not considered for the aim of modeling the system at a higher
level. This method of modeling gives the state of the whole swarm just by solving
the system equation once, no need for iterations to get the results as needed by the
microscopic method. All that is needed in this modeling technique is to find the
system equation and solve it. There are multiple examples to macroscopic model-
ing equations in literature like using the rate equation, the differential equation, the
partial differential equation, the langevin equation, the Fokker-plank equation and
others.

Real robots as obvious from the name, just conduct the experiments on the robots as
this will result in more accurate results than the modeling. There are a couple of diffi-
culties in working with real robots as the fraction between the robots and the ground
should be considered, this can’t be shown in modeling except by adding some kind
of fake fraction. Also, failure in communication can’t be modeled through simulator;
it is only a challenge when working with real robots. Most of the research available
was conducted on simulators and there are multiple simulators out there to work
with. Also, some chose real robots to experiment on which lead to the evolving of
multiple platform for real robots.

2.2 Collective Transport

Swarm robotics as discussed in previous part is concerned with the use of a group
of robots that can be identical or different, to perform a specific functionality that
cannot be performed by one small robot and would be more efficient doing it with
multiple small robots than using one big robot. In this thesis, cooperative transport
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in swarm robotics is going to be discussed thoroughly, as it is the problem of concern
that will be explained and will be tackled differently.

Cooperative transport is concerned with the deployment of a swarm of robots in
known/unknown environment in order to transport one or more objects from one
place to another. These robots can either be identical; all the robots know all the sub-
tasks to be performed to reach the main goal, or they can be different; meaning the
robots divided into sub-groups, each group has a specific sub-task to perform and
collectively the groups perform the main goal. In cooperative transport, the main
goal is of course transporting objects.

2.2.1 Ant Behavior

One of nature’s species that inspired cooperative transport is ants. Ants although
very small in size but collectively they can achieve big tasks. Ants are considered a
very sophisticated system, as ants start by trying to find a nest for the colony. This
nest must be big enough to fit the whole colony. The task of determining the best fit
nest starts by ants exploring the surrounding environment trying to find any place
that suitable to be the colony’s nest then starts the second phase of taking other ants
opinions in the nest, once this happens and multiple ants accept the new place as a
suitable nest, starts the final phase which is moving to the nest. After settling, the
ants start the surviving task of finding the food.

The task of finding food is the one of interest to this thesis, as this is the task con-
cerned with transportation. Transporting different food sources in size and varies in
distance to the nest. This task starts with ants spreading to try and cover as much as
possible of the surrounding environment leaving behind traces of pheromones. Ants
use these traces of pheromones to know their paths. If at the end of the path, a food
source was found, then returning ants keep leaving extra traces of their pheromones
to strengthen the traces on the food path, else if no source of food was found, the
ants take the route back without adding any pheromones to the path. Other ants
then check the different available paths according to traces of pheromones left by
other ants and go with the path with the highest traces.

The task ahead for the ants is to transport the food source found to the nest. There
can be two cases at this point in the task as described by Planqué, Van Den Berg,
and Franks [15], either the food source is too small, hence, can be easily transported
by one ant and this can be achieved by one of two methods as shown in Figure 2.10
adopted from Czaczkes and Ratnieks [6], either the object is so light that the ant lifts
the object and move forward, or the object is heavy to be lifted so the ant starts drag-
ging the object while moving backward, or the food source needs more than one ant
to be transported and according to Figure 2.10 adopted from Czaczkes and Ratnieks
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FIGURE 2.10: Individual vs cooperative transport in ants adopted
from Czaczkes and Ratnieks [6].

[6], ants cooperate together through one ant lifting the back of the object and moving
forward and the other ant dragging the front of the object and moving backward. In
the latter case, the ant starts a recruitment phase. In this phase, recruitment can be
achieved by different methods, tandem running in which an ant tries to lead another
ant to the food source which in return leads another one and so on, group recruit-
ment in which an ant can lead a group of ants of maximum thirty ants to the food
source to help transporting it or scent trails. Deciding on the method of recruitment
depends on the colony size.

After the recruitment phase comes the actual transportation. In Czaczkes and Rat-
nieks [6], cooperative transportation in ants in sub-divided into three categories,
the uncoordinated transportation, the encircling coordinated transportation and the
forward facing coordinated transportation. As for uncoordinated transportation, the
transportation is assumed to be achieved through ants pulling the object to be trans-
ported, but ants do this motion in opposite directions to one another which leads
to no forward motion due to the formation of multiple deadlocks. These deadlocks
are solved through random behavior of ants, either random orientations, or random
composition or random group behavior. Hence, uncoordinated behavior can be ob-
served. Investigations in uncoordinated transportation suggest that transportation
is done over three stages. Stage I, first ant locates the object to transport. Stage II, ob-
ject gets located by multiple ants, deadlock occurs and transportation stops. Finally,
stage III, deadlock is solved and transportation resumes. The final stage is charac-
terized with high speed in motion and better construction of path.

In encircling coordinated transportation, the ants collectively encircle the object to
be transported and start moving in coordinated motion to move the object. This cat-
egory of transportation starts with one ant that tried to move the object, if the size of
the object is bigger than the ant ability to move it other ants come to help forming a
circle around the object. The ants at the back of the object lift the end part and move
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FIGURE 2.11: Encircling coordinated transportation adopted from
Czaczkes and Ratnieks [6].

forward, the ants at the front drag the front part and move backward and finally, the
side ants either lift or drag the sides of the object and move sidewalks. All three mo-
tions should be coordinated between the ants to be able to move the object as shown
in Figure 2.11 adopted from Czaczkes and Ratnieks [6]. Coordination is so obvious
in this transportation category in the ants’ movement.

In forward facing coordinated transportation, an ant finds a food source and starts
immediately the transportation process by lifting the object from the front and be-
gins moving forward. Along the way, other ants spots the struggling ant transport-
ing the object and try to help by lifting either the sides or the end of the item and
move forward as well. More ants can join at the back but at this stage they help
by increasing the speed of transportation. this team of ants is shown in Figure 2.12
adopted from Czaczkes and Ratnieks [6].

FIGURE 2.12: Forward facing cooperative transportation adopted
from Czaczkes and Ratnieks [6].

2.2.2 Transportation Stages

Cooperative transportation in ants and also in swarm robotics is divided accord-
ing to McCreery and Breed [14] in to four stages, the decision stage, the attrac-
tion/recruitment stage, the organization stage and finally, the transport stage. These
four stages are shown as a flow chart in Figure 2.13 adopted from McCreery and
Breed [14]. An ant spots a food source that is bigger than the ant’s ability to move
alone and here comes the decision stage as the ant needs to decide is this source
worth being returned to the colony, if the answer is no, then it moves to search for
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another food source else if the answer is yes then the ant takes the decision of re-
cruiting other ants to help with food movement. Hence, it starts the recruitment
phase. The recruitment is done by any method, the ant can return back to the nest to
get other ants, or the ant can recruit neighboring ants around it or the ant can wait
for other ants to spot the same source and move it with one another. Some of the
ants will decide the movement directions, choose the path, and avoid obstacles and
other organizational decisions or ants will start pulling/pushing in any directions
without coordination and this is the third stage, the organization stage. At this time
in the process, ants reach the final stage, which is the transportation stage where the
ants are ready to move/transport the food source back to the nest.

FIGURE 2.13: Cooperative transportation stage adopted from Mc-
Creery and Breed [14].
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2.2.3 Transportation Techniques

Cooperative transportation in swarm robotics can be achieved through multiple
techniques. The robots can use their accumulative force to push the object whether
forward or backward to move it to the destination place. Also, the robots can use
some attached grippers to hold the object and grip it or pull it to goal position. An-
other way is the robots form a circle around the object and coordinate their move-
ment together toward the desired location. One extra way is that robots can be
divided into four groups, two groups at the sides of the object helping with path
alignment, one group at the back end of the object to push along the two groups at
the sides and finally, the fourth group works as leader for the transportation process,
helping in avoiding obstacles and making decisions regarding the best path to reach
target.

2.2.4 Transportation Controllers

Many researchers have extensively explored cooperative transportation in the past
years. Pereira, Campos, and Kumar [16] used caging technique to surround the ob-
ject to be transported, controlling the system is done using a decentralized algorithm
of a set of three reactive controllers shown in Figure 2.14 adopted from Pereira, Cam-
pos, and Kumar [16], the switching between these controllers is decided depending
on a constraint depending on the relative position of the robot with respect to other
robots and the object orientation with respect to the robots.

FIGURE 2.14: The three reactive controllers adopted from Pereira,
Campos, and Kumar [16].

Groß, Tuci, Dorigo, et al. [17] used self-assembled robots for the transportation pro-
cess. The controller in this paper is divided into two parts; the first part which con-
trols the assembling of the robots, and it consists of a simple neural networks, and
the second part which controls the transportation of the object to destination position
and this is divided into two sub parts, the first sub part is a hand-coded algorithm
to control the robots to recognize the destination position, the second sub part is a
recurrent neural network that forces the motion of the robots when they can’t recog-
nize the destination position. The steps from the moment the object is found to the
start of transportation is shown in Figure 2.15 adopted from Groß, Tuci, Dorigo, et
al. [17], the robots keep trying to position around the object until they find the best
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formation and they assemble in this formation and start the transportation process.

FIGURE 2.15: Self-assemble and transportation.

Fink, Hsieh, and Kumar [18] also used the caging technique in transporting the ob-
ject. The controller proposed is a mix between decentralized shape controller and a
global navigation function. The behavioral architecture of this system is shown in
Figure 2.16 adopted in Fink, Hsieh, and Kumar [18], it consists of three states, the
switching between these states is decided depending on a simple readings read from
the sensors.

FIGURE 2.16: Behavior architecture.

Gross and Dorigo [19] used artificial neural network as the control system to control
the movement of the robots where the input to the neural network is the readings
from the sensors of the robot and the output is the commands needed by the motors
of the robot to start movement direction. They also chose to use evolutionary algo-
rithm in the transportation process, depending on a genetic algorithm and a fitness
function to decide the weights of the neural network output.

Rubenstein, Cabrera, Werfel, et al. [20] suggest the use of a decentralized simple
strategy to transport the object. In this strategy, each robot applies a force in the
direction of the destination position without taking into consideration other forces
exerted by the neighboring robots.

Sugawara, Correll, and Reishus [21] are suggesting a new technique for object trans-
portation using the phenomena of granular convection. In this research, the re-
searchers’ system is derived from the robots after applying an external force on them,
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this external force can be gravitational force or magnetic force or maybe even some-
thing larger like infrared or chemical gradients. They chose a probabilistic model for
robot movements.

Wilson, Pavlic, Kumar, et al. [22] proposed the use of decentralized controller ac-
cording to a state machine that consists of three states shown in Figure 2.17 adopted
from Wilson, Pavlic, Kumar, et al. [22]. The transition between these states is done in
a probabilistic manner depending on each state.

FIGURE 2.17: Three state controller.

Yu, Yasuda, Ohkura, et al. [23] suggested a new controller for the searching stage
based on the CMA-NeuroES for the robot using artificial neural network proposed
by adding complexity to the environment with the aid of covariance matrix adapta-
tion evolution strategy (CMA-Neuro) agreed by the incremental artificial evolution
method. In this paper, the researchers chose the incremental method as it helps di-
viding the big problem to smaller tasks making it easier for the evolution method to
find sequential solution for each task.

TORABI [2] implemented an algorithm based on the procedure of food retrieval in
ant coloney. In this paper, the researcher suggested the use of a simpe coordination
technique between robots based on odometry with the aid of an omni-directional
camera and he made sure the system is completely decentralized. In this system, the
communication between the robots is in minimal state or maybe no communication
at all due to the relying on the camera.

Habibi, Kingston, Xie, et al. [24] proposed an algorithm using the same division men-
tioned before, that divides the controller of the robots in to four controllers, rotating
the object around a pivot robot, rotating the object in place around its centroid, trans-
lation and combing translation with rotation motion. In this paper, the researchers
divide the robots into gripper robots; these are the robots that grip the object to des-
tination, and guide robots that defines the path to destination as shown in Figure
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2.18 adopted from Habibi, Kingston, Xie, et al. [24].

FIGURE 2.18: Guide robots (blue) and gripper robots (black).

Chen, Gauci, Li, et al. [25] also use a decentralized controller to control the motion
of the robots, the researchers chose the state machine shown in Figure 2.19 adopted
from Chen, Gauci, Li, et al. [25] as their controller. In this paper, they tackle the prob-
lem differently, of course the size of the object to be transported can cause occlusion
to the robots and to help the robots to see the target position, but instead of seeing
this as a problem they decided to use it to help the robots move to target position.
The robots keep pushing the object in the direction that the object occludes by its
surface, this always guarantees the object reaches destination but not using the op-
timal path.

FIGURE 2.19: Controller state machine.

Habibi, Xie, Jellins, et al. [26] suggested to divide the object transportation task but
in a different way that is shown in Figure 2.20 adopted from Habibi, Xie, Jellins, et
al. [26], the researchers proposed dividing the robots into two, the first group is as-
signed the path planning task where the group explores the environment searching
for the target position and constructing the best path to reach it. The second group
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of robots is assigned the object manipulation task where the group is responsible for
holding or gripping the object and transporting it through the environment taking
into considerations any obstacles and communicating with the first group of robots
to get the path already constructed to move through it.

FIGURE 2.20: a. path planning robots, b. object manipulation robots.

Feo Flushing, Gambardella, and Di Caro [27] defined the STASP-HMR problem and
proposed a decentralized approach for it. In this approach, each robot executes a
common mathematical model depending on local information and limited sharing
option. In the paper, the researchers divided the solution into two parts. The first
part is proposing a decentralized coordination and planning algorithm taking into
consideration both the computational and communication requirements. As for the
second part, they suggested a top-down algorithm to help developing a decentral-
ized system from the centralized mathematical model.

2.3 Conclusion

Cooperative transport in swarm robotics literature nearly collect all proposed tech-
niques and methods in literature and briefly explain them, giving us an overall in-
sight in the world of cooperative transportation in the literature. At the time of
proposing this work, we were not able to locate any paper talking about multiple
objects transportation at the same time. All available techniques in literature in-
vestigate the transportation of only one object at a time resulting in multiple tech-
niques and algorithms in this area, but with deficiencies in the area of multiple ob-
jects transportation, leading to the introduction of the problem to be solved in this
thesis, which was also discussed.
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Chapter 3

Proposed Solution

In this chapter, we present our proposed solution for the problem discussed in chap-
ter 1. The problem we are concerned with is transporting multiple objects at the
same time with the aid of swarm robotics systems. As mentioned in chapter 2, this
problem was not tackled nor discussed in any research yet, hence no baseline to start
with, so, to start tackling the problem in hand we are setting some basic assumptions
that will be discussed shortly.

3.1 Proposed System and Solution

In this thesis, we intend to construct an environment that resembles a damaged
building/floor where multiple victims are trapped inside. Our environment con-
tains multiple obstacles that are distributed randomly, as shown in Figure 3.1, this
figure represents our environment with obstacles only, it was conducted on VREP
simulator, the robots to be used will be ePuck robots. This application is one of the
well known applications in this domain, known as search and rescue application
and was discussed before and solved in multiple different ways but for only trans-
porting one victim/object at a time.

Our robots traverse the proposed environment with the target of finding and trans-
porting multiple victims at the same time for rescue purposes. The goal is to rescue
all victims inside the building in an efficient way in the least possible time before
building damage prevents safe rescue operations. The search and rescue operation
must avoid any obstacles in the path. In our experiment, we start with tens of robots,
they start the exploration phase, and the number of robots keeps decreasing due to
the formation of smaller group of robots that will start transporting an object. In our
system, the robots are divided into two types, the recruiter robot that is the robot
that spots the object first and starts the recruiting process and the recruited robots
that are the robots that got recruited to transport the object.

As for the algorithm for transporting multiple objects, according to Couceiro, Vargas,
Rocha, et al. [28], the authors investigated five algorithm for searching any system,
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FIGURE 3.1: Environment with obstacles only

these algorithms are Robotic Darwinian Particle Swarm Optimization (RDPSO), Ex-
tended Particle Swarm Optimization (EPSO), Physically Embedded Particle Swarm
Optimization (PEPSO), and Glowworm Swarm Optimization (GSO). We work on
modifying the Robotic Darwanian Particle Swarm Optimization (RDPSO) to trans-
port multiple objects at a time, our new algorithm is called Multi Robotic Darwinian
Particle Swarm Optimization (MRSDPSO). A pseudo code of RDPSO algorithm is
shown in Algorithm 1.

As for the proposed system, we are using the methodology of breaking down the
problem into four stages as explained by McCreery and Breed [14]. In their paper,
they divided the system in to four stages, the decision stage, the attraction/recruitment
stage, the organization stage and lastly, the transportation stage; the four stages were
discussed earlier in literature review and summarized in Figure 2.13. The four stages
are illustrated with our proposed solution in Figure 3.2. Next, we explain our pro-
posed solution for each stage.
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FIGURE 3.2: Proposed solution state machine

3.1.1 Decision Stage Solution

The decision stage represents the start of any swarm system. In this stage, our sys-
tem consists of a group of robots that get deployed in our environment randomly,
they are positioned at the start point which is going to be later the target point that
the robots aim to reach to rescue the victims. The robots start moving around trying
to explore the whole environment searching for any object to be transported, in the
way avoiding any obstacles that are scattered around. While robots move they keep
track of their movement inside the environment to be able to return with the rescued
victim to the target position. In our application, the starting position for instance the
door is also the target position to return to with the victims.

At this point, we have one of two states as seen in Figure 3.3, the first state which
is the explore state, where the robots are still moving around exploring the environ-
ment with the target of finding an object/victim to be transported, hence, move to
the next stage. The second state which is the object state, where one robot spots an
object and avoid other robots from re-finding it to go to second stage which is the
recruitment stage. The spotted object is no longer seen by other robots for the robots
to keep searching for other objects in the environment. Later on the object is re-seen
by the robots that get recruited to transport it.

3.1.2 Attraction/Recruitment Stage Solution

This stage is the second stage in our system, it is reached when a robot spots an object
that needs to be transported to destination area. Once the object is spotted, at this
point the target is only detected by the robot that spotted it and can not be detected
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FIGURE 3.3: Decision stage state machine

by other robots in the environment to avoid any conflict of more than one robot try-
ing to lead the transportation process. The next state at this point is to initiate the
recruitment method to seek help of other robots to transport the object. The com-
munication technique between our e-puck robots is based on zigbee, since this is the
module provided with e-puck robots. There are multiple techniques for recruitment
that were discussed in Chapter 2. In our system, the robot initiates communication
with nearby robots to start the recruitment phase.

When the robot establishes communication with robots around it, there will be two
states as shown in Figure 3.4, the first state, the recruit state where the number of
robots needed for transporting the object is not met so the robot keeps accepting
other robots to join its group, hence, the recruited robots start seeing the object. The
second state which is the organization state, where the number of robots needed for
recruitment is met, at this point if a robot is contacted for recruitment, the leading
robot won’t accept it joining the group so it will return to exploration mode and the
whole system moves to the next stage.

FIGURE 3.4: Recruitment stage state machine
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3.1.3 Organization Stage Solution

The organization stage is the most important stage in our four stages solution. In
this stage, the group of robots that is recruited to transport the object along with
the recruiter robot start aligning to reach the best direction to target to be able to
accurately transport the object. The aligning process mainly depends on the method
of transportation. Three transportation techniques were discussed in chapter 2. We
chose to use the pushing technique in our algorithm. We align the robots in the po-
sitions where the target destination is in front of them, so when they start pushing,
the target moves toward the final position. We calculate the side in the target that is
the farthest from the end position, and according to the number of recruited robots
decide equal number of positions along this side for the robots to go to and start
pushing.

3.1.4 Transportation Stage Solution

This is the stage where the main action of transportation takes place. By the end
of this final stage in our solution, the object reaches the destination position. We
discussed in chapter 2 three techniques for object transportation, which are pulling,
pushing and encircling. The first technique is pulling the object from front and in
this case the robots must get aligned in front of the object and must be equipped by
grippers to be able to pull the object, the second technique is pushing the object to
destination and for this, the robots need to be aligned towards the back side of the
object, finally, the third technique is encircling the object to transport it, and in this
case, the robots form a circle around the object and move it together. We chose the
pushing technique to be our transportation technique in this thesis.

The whole group at this point works together to relocate the object toward the desti-
nation position. At this stage, we assume that the transportation path is a clear path
in front of the robots, without any obstacles to avoid. The group of the robots keeps
moving towards destination and once reached, they have one of two options as seen
in Figure 3.5, either to go back to exploration state and keep looking for other objects
to be transported, or reach a halt state as this marks the end of our experiment. If all
the targets in the environment are transported to final position, then our experiment
is marked as a successful one.

3.2 Swarm Robotic Environment

In this thesis, we aim to transport more than one object at a time using swarm
robotics system. Our environment is divided in to two main platforms, the robots
and the simulator. As for the robots used, we will use ePuck robots. ePuck robots
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FIGURE 3.5: Transport stage state machine

are very powerful robots. We mainly chose ePuck due to its ability to move objects
due to its motor. In Appendix A, there is a complete comparison between most com-
monly used robots in literature of swarm.

The transportation of objects is conducted in a simulated environment, for this mat-
ter we chose VREP simulator. The choice of VREP as our environment simulator is
due to multiple reasons, the main reason is being an open source software and sup-
port is highly provided, along with having a complete library for ePuck robot that
we use as our robot in this thesis, another comparison between available simulators
in literature of swarm is located in Appendix A

3.3 Performance Measures

In this section, we discuss the performance measures that we compare our results
against. Since we are unaware of any available systems similar to ours till this mo-
ment, the suggestion is to compare our system to three selected papers that are
Ghosh, Konar, and Janarthanan [1], TORABI [2] , and Kube and Bonabeau [3]. In
each experiment, we focus on collecting the following set of criteria:

• Environment area.

• Swarm size.

• Experiment runtime

• Success/Failure

Success/Failure of each experiment is to transport all existing objects in the envi-
ronment to the target position which we define in our experiment as the door of the
building. In our experiments, we fix the value for both the environment area and
the number of objects to be transported and collect the data for the rest of the above
mentioned criteria. Afterwards, we change the value for both the environment area
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and the number of objects to be transported and recollect the data for the same cri-
teria as done before.

We compare our proposed multiple object transportation system running MRDPSO
algorithm in terms of accuracy and time efficiency to the results from three selected
papers that are Ghosh, Konar, and Janarthanan [1], TORABI [2], and Kube and
Bonabeau [3].

3.3.1 Accuracy

Accuracy of transporting multiple objects at the same time is actually the main pur-
pose of our thesis and is of high importance in determining our system as a success
system in swarm transportation. Accuracy is defined as the ability of the robots to
transport multiple objects at a time to a specific destination. The success rate for
accuracy is decided on whether the robots are able to transport the objects to the
desired place.

3.3.2 Time Efficiency

Time efficiency of transporting multiple objects at a time is another important met-
ric to be taken into consideration. Time Efficiency is the time taken by the robots to
transport multiple objects at a time in comparison with the time needed to transport
same number of objects by single object transport systems.

We compare our multiple objects transportation system to the results from three se-
lected papers that are Ghosh, Konar, and Janarthanan [1], TORABI [2], and Kube
and Bonabeau [3]; where the environment area will be fixed for a set of experiments,
while the rest of the criteria will vary across various trials. The results of the con-
ducted trials for each experiment will be presented in a table along with one illus-
trative graph that shows the relation between the swarm size and the runtime.
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Chapter 4

Experimental Methodology

In this chapter, we discuss all the techniques we used, we explain them briefly and
elaborate on how we implemented them. Also, we explain the algorithm we im-
plemented, the MRDPSO algorithm in details and explain each of its stages and
all the methods used within. Moreover, in this chapter, we review our experimental
strategy and show our different environments. Furthermore, we compare our imple-
mented algorithm to the results obtained from three selected papers that are Ghosh,
Konar, and Janarthanan [1], TORABI [2], and Kube and Bonabeau [3]. And finally,
we state the performance measures that we will compare against in our results. Our
comparison is different due to the different nature of our environment than that of
the papers we are comparing to. Our environment is a multi object transportation
environment, while their is a single object transportation environment. In order to
overcome this, we got our average time and divided it by the number of targets
transported.

4.1 Methodologies

In this section, we present the techniques we used through out our experiments. We
explain how each one is implemented and how each one is put in use through the ex-
periments. Along with these techniques used, we explain our proposed algorithm,
MRDPSO algorithm.

These techniques are:

1. RDPSO Algorithm.

2. Target estimation technique.

3. Recruit Technique.

4. Transportation Technique.

5. Probabilistic Finite state machine.

6. MRDPSO Algorithm.
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4.1.1 RDPSO algorithm

The main idea for RDPSO is dividing the whole swarm into a set of smaller swarms.
The goal of each swarm set is finding a proper solution and at the end all these solu-
tions are to be compared and the best solution is chosen among the found solutions.
Then the different swarm sets change their solution to the chosen best solution in
the environment. The robot distribution depends mainly on their deployment in the
environment which is chosen to be random for our experiments.

We modified the famous RDPSO algorithm which is an exploration algorithm and
added to it the transportation part. RDPSO depends on having multiple groups of
robots exploring the environment with the aim of finding a specific thing or map-
ping the environment or drawing the path between two points, we extended the
functionality of this algorithm that now it can retrieve an object to a specific place.
Not only one object to be transported but in our scenario, we transport multiple ob-
jects at the same time. The RDPSO algorithm pseudo code can be seen in Algorithm
1.

In our experiments, RDPSO is used, where the robots are deployed in the environ-
ment in groups. These robots then start to randomly move exploring the environ-
ment. Once a robot finds a target, it starts to estimate the size in order to estimate
the number of robots that it needs to recruit to move the target. Once that is done,
the robot sends signals with the position that the recruited robots need to move to
in order to get ready for transportation. Once all needed robots arrive to their po-
sitions, they start pushing the target towards the end position that the target needs
to reach. The main idea here is that two or more robots can find different targets at
the same time. Each robot will broadcast its signal to the other robots, which aren’t
recruited, in order to recruit them. If the robot couldn’t recruit all the needed robots
needed to transport the target, then the experiment will fail in spite the fact that the
robot found the target.

4.1.2 Target estimation technique

Target estimation is very important in cooperative transportation. This technique is
the one that decides the number of robots needed to be recruited. In another words,
the decision of the number of robots that fits to move an object depends on this tech-
nique. In our experiments, we make the robot rotates around the object in order to
get the corners of the object and from these corners, the robot computes both the
length and the width of the object and hence calculates its area. According to the
area of the object, we decide the number of robots needed to be recruited. We made
an assumption at this point that every 3 centimeters square of area need one robot to
transport. So, if we have an object with width 3 centimeters and length 3 centimeters,
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Algorithm 1 RDPSO Algorithm

1: procedure EXPLORE_ENVIRONMENT
2: num_of_swarms← deploy_robots() . Robots deployment
3: for i = 1 to num_of_swarms do . Loop over ’i’ swarms
4: for j = 1 to num_of_robots do . Loop over ’j’ robots
5: S ← current_solution()
6: if S > Sbest then
7: Sbest ← S
8: end if
9: build array X for all Sbest for swarm i

10: Xmax ← max(X)
11: end for
12: build array B for all Xmax

13: end for
14: for i = 1 to num_of_swarms do
15: if Bi >= threshold then
16: reward_swarm() . create robot or swarm
17: else
18: punish_swarm() . exclude robot or swarm
19: end if
20: end for
21: end procedure

its area will be 9 centimeters square. This object will need three robots to transport it.

4.1.3 Recruitment technique

Recruitment technique is concerned with the communication between robots. Re-
cruitment is the start of the transportation process. In recruitment, the robot has
found a target to be transported but it can’t transport it on its own, so it needs the
help of other robots to finalize the transportation. There are multiple techniques for
recruitment in literature and we stated them in Chapter 2. The recruitment method
we chose for our experiment is recruiting robots that are found around the area
where the target was found. The robot that found the target starts by sending signal
that can be received by any robot in explore state and waits for confirmation and
number of recruited robots to reach the number of needed robots to transport the
target. This is illustrated in the recruitment sequence diagram shown in Figure 4.1.

4.1.4 Transportation technique

Transportation technique is considered the main purpose of our thesis. The trans-
portation of a target from its current position to a desired position or as in our case
the transportation of multiple objects to a specific destination. In our experiments,
we use pushing technique as the method for transporting the objects. The robots that
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FIGURE 4.1: Recruitment Sequence Diagram

get recruited are directed to go to the side that is the farthest from the end position
with orientation looking to the final position, then they start pushing towards the
final position. Each recruited robot that reaches the final destination reports back to
its recruiter robot that it is done with the transportation process, and the recruiter
robot waits to get confirmation from all the robots that it recruited in a previous step
in order to communicate in the environment that this target is transported.

4.1.5 Probabilistic finite state machine (PFSM)

Finite state machine is a mathematical representation for all the possible states a
robot can be in. Finite state machine facilitates the movement of the robots in our
experiments. The transition between the states takes place depending on multiple
possibilities, which can be initiated from the robot itself or the surrounding robots or
the different elements in the environment; i.e. if it encounters an obstacle or reaches
the target.

PFSM helps in the transition of the robots from one state to another depending on a
specific probability that is calculated in relation with the fired actions to move to the
next state. Since in our case, the transition between the states is not binary, meaning
a robots can receive more than one signal at a time. The robot uses these signals to
decide depending on calculated probabilities which state it should move to.
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In our experiment, any robot can take one of two paths, either the recruiting robot
path which is the robot that finds the target and initiate the transportation process
or the recruited robot path which is the robot that receives the recruit signal and par-
ticipates in the transportation process. The finite state machine for our implemented
algorithm is shown in Figure 4.2 and will be explained in details in the next section.

FIGURE 4.2: MRDPSO algorithm Finite State Machine
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4.1.6 MRDPSO algorithm

In our proposed algorithm, we used the finite state machine methodology to define
the states that the robot can go to in the environment. We have twelve states which
are explore, obstacle, target, size_estimate, recruit, waiting_robots, prepare_transport,
reorient_robots, orientation, transport, reorient_transport and done_transport, and
are shown in Figure 4.2. The movement between states takes place according to each
robot’s position and the surrounding environment.

Let’s start with the explore state, from the name it is the state in which the robot goes
around the environment trying to locate an object that needs to be transported. This
is the start state of all the robots and once they move to another state, they can return
to this case in one of two cases, first case, if the robot spots a target but it was with
an angle that the robot is unable to estimate its size, in this case the target is marked
not found and the robot return to explore state, the second case is when the robot is
done with transporting the object then it moves to explore state to start looking for
remaining objects.

One more functionality happens in the explore state is listening to the recruit signal,
if a robot already found a target and is done with the size estimation; the size esti-
mation state will be discussed later; it will start with the recruiting of other robots to
help in the transportation task; recruiting state is also going to be explained shortly;
so the robot in the explore state is always listening for the recruit signal to move to
help the other robot.

Second the obstacle state, in this state the robots avoid obstacles that they encounter
while moving in the environment. The technique for object avoidance is changing
the robot’s orientation and send it to explore state to continue exploring the environ-
ment. This state can be reached from the explore state, the orientation state or the
reorient state.

Third the size estimate state, this state is one of the important states, as in this state
the robot estimates the size of the object to figure out how many robots needed to
help in the transportation of that object. The technique we will use for size estima-
tion is once the robot reaches the target, it starts rotating around the object to get its
corners and from the computed corners get the length and the width of the object
and hence calculates the area of the object. After size estimation the robot goes to
the recruit state.

Fourth the recruit state, at this point the robot is ready to seek the help of other robots
to transport the object. This is one of the states that depends on the communication
between robots. The communication between the robots takes place through the
wireless modules inside the robot. The robots in explore state are listening to any
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recruit signal that might be sent from any robot in contact with a target object. Af-
ter this, the recruiting robots move to the prepare transport stage and the recruited
robot moves to the reorient robot state.

Fifth the prepare transport state, in this state the recruiting robot computes the posi-
tions that the recruited robots need to reach in order to be able to transport the object.
After computing these positions, the recruiting robot communicates the positions to
the recruited robots in order for each recruited robot to start moving to its specified
place. Then, the recruiting robot moves to the waiting robots state.

Sixth the waiting robots state, in which the recruiting robot computes the position it
needs to go to, in order to be ready to start the object transportation. It depends on
the previously calculated corners in size estimate state to determine the nearest two
corners to the end position. Then it uses these two corners to position itself near the
middle of the object side of these corners. Once it arrives to that position, it waits
for the rest of the recruited robots to reach the target in order to go to the reorient
transport state.

All the previous states handle our algorithm from the point of view of the robot that
found the target to be transported and wants to start the recruiting process. Now,
we will list the states from the point of view of the robot that was exploring the en-
vironment and received a recruitment signal to help the recruiting robot.

First the reorient robot state, the robot reached this state as it received the signal to
be recruited while being in the explore state. In this state, the robot is waiting for
the recruiting robot to send the new position that the recruited robot needs to go to.
Once the position is communicated to the recruited robot it sends back a confirma-
tion signal to the recruiting robot and moves to the orientation state.

Second the orientation state, this state handles the movement of the recruited robot
towards the position communicated to it from the recruited robot. This state has
multiple cases that depends on the position of the robot in the environment, it keeps
alternating between states until it reaches the desired position. Next, the recruited
robot moves to the transport state.

Third the transport state, this is the main target of our thesis, the state in which the
target gets transported from the place it is at to the destined position. In this state,
the robots are aligned at the far side of the target from the final position, so the robots
keep pushing in the direction of the final position until either the target reaches desti-
nation or an obstacle was found by the recruiting robot and sends a signal to reorient
the recruited robot to a new pushing position. When the target reaches end position,
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the robots move to the done transport state.

Finally the done transport state, this state is reached by both the recruiting and the
recruited robots. It is the state that decides whether the robots need to continue
exploring the environment or whether all the targets are transported and the exper-
iment is finished.

The states discussed above can be illustrated more in Figure 4.3, this is a block dia-
gram that represents the states we explained along with the transition from one state
to another. Also, the pseudo code for our implemented algorithm is represented in
Algorithm 3 which can be found in Appendix B.

FIGURE 4.3: MRDPSO algorithm Block Diagram

4.2 Experimental Strategy

In each experiment in our thesis, we have some parameters that are constant for a
set of experiments and then we vary them and start recording more results, these
parameters are :

• Environment area
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• Target size

• Swarm size

To assess our system, the following data will be collected in each experiment.

• Experiment runtime

• Success/Failure

Experiment runtime in our case is defined as the time needed to transport two tar-
gets from their location to the final destination. Success/Failure of each experiment
is to transport the objects in the environment to the target position which we define
in our experiment as the start position where the robots get deployed. In our exper-
iments, we run a set of experiments on each area of the chosen environment areas
discussed in the next section and collect the data for the rest of the above mentioned
criteria.

Our test environment is divided in to two main platforms, the robots and the simu-
lator. As for the robots used, we used ePuck robots which are very powerful robots.
The transportation of objects is conducted in a simulated environment, for this mat-
ter we chose VREP simulator. The reasons for our choices for both the robot and the
simulator has been discussed in Chapter 3 and the comparisons related to choosing
the robot and the simulator are included in Appendix A

4.2.1 Environment Area

In our experiments, we use different rescue environment sizes as it directly affects
our robot behavior. The chosen environment sizes are 50 and 100 square meters.
Figures 4.4 and 4.5 represent the environments we used for our experiments.

• Medium area for our environment, 50 meters square that might resemble a
floor of one damaged apartment

• Large area for our environment, 100 meters square that might resemble a floor
of two damaged apartments

4.2.2 Target Size

Target size is a very important factor in our experiments, as the target size is the
major contributor in deciding the number of robots needed to transport that target.
Also, the shape of the target plays an important role in the size estimation of the
target. In our experiments, we chose all our targets to be cuboid in shapes as we
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FIGURE 4.4: Environment 50 meters square with obstacles

depend on the four corners to calculate the area.

As for the weights of the target, we just added these weights depending on the size
of the target. If the target is a small on, we added a small weight and as the size of
the target increases, we increase the weight accordingly. For example, we have a tar-
get of size 6 centimeter squares that we added its weight to be 1.5 kilograms, a target
of size 10 centimeter squares that we added its weight to be 2 kilograms and finally
a target of size 12 centimeters square that we added its weight to be 3 kilograms.

In our experiments, we ran each experiment with two cuboid targets with differ-
ent dimensions to ensure different area for each target and hence different number
of robots will be recruited to transport each target. Figure 4.6 shows four different
shapes for the targets we used while assessing our experiments. These sizes are 6
centimeters square, 10 centimeters square, 12 centimeters square, and 15 centimeters
square. It was conducted using VREP simulator. We did our experiments on three
target sizes only, the 6 centimeters square, 10 centimeters square, and 12 centimeters
square. We manipulated the positions of the targets in each experiment in order to
have more insight regarding the time needed to transport with different positions
for the target.

4.2.3 Swarm Size

Swarm size is one of the variables we varied in our experiments. Swarm size affects
our experiments in different ways, first way is at the beginning of the experiments,
as it affects the explore state as well as the recruit state. In the explore state, swarm
size affects the time taken to find targets to rescue. The second way the swarm
size affects our experiments is in recruiting state as we will need specific number of
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FIGURE 4.5: Environment 100 meters square with

robots to transport all the targets available in the environment, so adding number
of robots less than what is needed to transport will cause our experiments to fail.
We chose different swarm sizes for our experiments depending on the environment
area, below are the number of robots we experimented with for the two environment
areas we have:

• Environment of 50 meters square: 10, 15, 20 robots

• Environment of 100 meters square: 20, 30, 40 robots

Something worth mentioning at this point is that we randomly deploy the robots
in the environment during all our experiments. Random deployment of robots in
the environment ensures variety of start positions and orientation for each deployed
robot and hence different results for the experiments.
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FIGURE 4.6: Different shapes for targets

4.3 Performance Measures

In this section, we define and present our metrics of comparison with the results
collected from three selected papers. These papers are:

• Ghosh, Konar, and Janarthanan [1]

• TORABI [2]

• Kube and Bonabeau [3]

We define our metrics of comparison with each paper depending on the work done
by the author(s), we mainly have three different metrics that are:

• Environment Runtime versus number of transportation steps

• Environment Runtime versus the mass of the target

• Environment Runtime versus the area

The comparison we conducted is a bit different since we implemented a multi object
transportation algorithm and the three papers we chose are single object transporta-
tion algorithms. We solved this issue by calculating the average time needed for
transportation in our experiments and divided this number by the total number of
targets that got transported, and obtained the results after calculations and com-
pared them with the results obtained from the three selected papers.

4.4 Conclusion

In this chapter, we presented the methodologies we used through our thesis. We
discussed the RDPSO algorithm, the PFSM, the size estimation of the target, the
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recruitment of the robots, the transportation technique we used and finally our im-
plemented algorithm, the MRDPSO. Next, we explained our strategy in conducting
the experiments, the parameters that are constant for a set of experiments and the
data to be collected in each experiment along with explaining the two environments
we tested on. Finally, we presented the three papers that we will compare our result
to and explained the metrics upon which the comparison will be against.



49

Chapter 5

Experimental Results

In this chapter, we present the results of our experiments. We conducted all our
experiments on simulation base, we used the VREP simulator as our simulating en-
vironment. The robot used in our experiments is the ePuck robot after altering its
code with our implemented algorithm, the MRDPSO algorithm. Deciding on VREP
simulator and ePuck robot was a result of a comparison made and referenced in
Appendix A. We collected from each experiments the following:

• Environment area

• Target size

• Experiment runtime

• Success/Failure

All the collected data is data for transporting two targets at the same time. We dis-
cussed every metric from the above in chapter 3. In our experiments, we were able
to transport more than one target at the same time, to be exact two targets and this
was the main purpose of our thesis. We took more time in transporting two targets
than other comparative results, but this is logical as we are transporting two targets
while others transporting one target.

We ran multiple set of experiments, all on our newly implemented algorithm, vary-
ing the environment size as we had two different environments, the 50 meters square
environment and the 100 meters square environment. Also, we varied the sizes of
the targets between 6 centimeters square, 10 centimeters square, and 12 centimeters
square. Finally, comparing our results with the results of three papers Ghosh, Konar,
and Janarthanan [1], TORABI [2], and Kube and Bonabeau [3].

5.1 MRDPSO Algorithm Assessment

In this section , we will be presenting the effect of varying the mentioned metrics
and will be explaining each one of them in details. The comparisons presented in
this study are as follows:



Chapter 5. Experimental Results 50

• Experiment Runtime vs Environment area

• Environment Area vs Success/Failure

• Experiment Runtime vs Target size

• Single RDPSO verse Multi MRDPSO

5.1.1 Experiment Runtime vs Environment area

In this section, the relationship between the time taken to transport two targets at the
same time which is referred to as the environment runtime and the environment area
will be demonstrated. In chapter 4, we presented two different environment area,
the 50 meters square size environment and the 100 meters square size environment.
It is shown in Figure 5.1 that as the environment area increases the environment
runtime increases. As it takes the robots more time to transport the target, as we
increased the area they will need to cover while transporting.

In table 5.1, we present some of the data collected over a set of experiments on the
50 meters square size environment, in addition to data collected over a set of exper-
iments on the 100 meters squared size environment that are presented in table 5.2.
As seen in Figure 5.1, the minimum time taken to cover the 100 meters square size
environment is 720 seconds while the minimum time taken to cover the 50 meters
square size environment is 699 second.

TABLE 5.1: MRDPSO Algorithm Data collected for 50 meters square
size environment

Start
time
target 1

Start
time
target 2

End
time
target 1

End
time
target 2

Status Time
differ-
ence

Time in
sec

03:24 04:56 21:20 24:29 success 21:05 1265 sec
03:25 03:25 27:58 26:12 success 22:47 1367 sec
03:20 04:40 13:45 18:40 success 15:20 920 sec
02:15 06:45 31:23 45:50 success 43:35 2615 sec
0 04:22 0 22:39 fail 18:17 1097 sec
03:28 0 30:27 0 fail 26:59 1619 sec
0 04:07 0 19:40 fail 15:33 933 sec
03:07 04:41 11:43 14:64 success 11:39 699 sec

5.1.2 Experiment Area vs Success/Failure

In this section, we will present the relationship between the different environment
area we have and their status after the experiment, whether the two targets reached
the final position and we refer to this as a transportation success process or if one
or both did not reach the final position and we refer to this as a transportation fail
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TABLE 5.2: MRDPSO Algorithm Data collected for 100 meters square
size environment

Start
time
target 1

Start
time
target 2

End
time
target 1

End
time
target 2

Status Time
differ-
ence

Time in
sec

04:11 08:47 20:24 32:10 success 27:59 1679 sec
02:07 04:39 19:00 27:50 success 25:43 1543 sec
04:54 08:05 29:49 51:10 success 46:16 2776 sec
04:33 0 29:20 0 fail 24:47 1487 sec
03:19 0 29:20 0 fail 26:01 1561 sec
07:40 07:00 16:40 19:00 success 12:00 720 sec
03:02 06:00 27:00 23:00 success 23:57 1437 sec

FIGURE 5.1: Experiment Runtime vs Environment area Graph

process as shown in Figure 5.2. As mentioned before, we have two different envi-
ronment areas.

We had multiple failure cases, We had multiple failure cases and one of the reasons
for the failed scenarios that relates to this section is the failure in the obstacle avoid-
ance method, this failure causes one or more of the recruited robots to not reach
the target they need to transport, resulting in that the reached number of recruited
robots to be less than needed to transport the target and hence failure of the trans-
portation process.

Another failure case is due to the random deployment of the robots, deploying the
robots on a wide area in the environment caused the robots to take more time to
reach the target and more time to transport it and in some cases they fail to trans-
port. We concluded from that that we need to deploy our robots on not more than
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20% of our environment area, so we need to deploy them in an area of 10 meters
square for the 50 meters square environment area and 20 meters square for the 100
meters square environment area.

FIGURE 5.2: Environment area vs Success/Fail Graph

5.1.3 Experiment Runtime vs Target size

In this section, we will present the relationship between the time needed to finish
the transportation process which is the experiment runtime and the size of the tar-
get. We varied the size of the target to test multiple used methods in our algorithm.
Since the estimation of the size method, and the number of recruited robots method
both depend on the size of the target. We use three different target sizes for our
experiments, the 6 centimeters square size, the 10 centimeters square size and the
12 centimeters square size. In our environments, we transported a total area of 16
centimeters square, 18 centimeters square and 22 centimeters square.

During our experiments, different sizes were estimated and different number of
robots got recruited depending on the size, as mentioned before, we made an as-
sumption that each robot can transport 3 centimeters square of area, hence, in the
case of the 6 centimeters square size, the recruited robot recruited two more robots
to help with the transportation process. In the case of the 10 centimeters square size,
the recruited robot recruited three more robots to help with the transportation pro-
cess. And finally, in the 12 centimeters square size, the recruited robot recruited four
more robots to help with the transportation process.
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We ran this type of experiment on a set of our conducted experiments, the different
sizes of the targets we chose were transported most of the time, as shown in Figure
5.3.Also, in Table 5.3 we present a sample of the collected data, these data reports
the different transportation time for the summation of the area of the two targets
transported at the same time which are the 18, and the 22 centimeters square. In
Figure 5.3, the data for the 18 centimeters square is collected from the experiments
ran on the 50 meters square environment and the data for the 22 centimeters square
is collected from the experiments ran on the 100 meters square environment.

TABLE 5.3: MRDPSO Algorithm Sample collected Data for target size

Target Size 18 cm2 22 cm2
Time 21:05 27:59
Time 22:47 25:43
Time 11:39 23:57

FIGURE 5.3: Experiment Runtime vs Target Size Graph

5.1.4 Single RDPSO verse Multi RDPSO

In this section, we present the relationship between the time needed to finish the
transportation process in case of a single RDPSO algorithm and the time needed to
finish the trasportation process in the case of a multi RDPSO algorithm. In our ex-
periments, we ran the single RDPSO algorithm with two targets in the environment,
the robots start by fetching the first target and transporting it to final destination
and then move to the second target to transport it. Then we ran the multi RDPSO
algorithm with the same environment criteria, but our algorithm will fetch the two
targets at the same time.
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Table 5.4 represents a sample data collected for the single RDPSO algorithm and the
Multi RDPSO algorithm under the 50 meters square environment, in addition, table
5.5 represents a sample data collected for the single RDPSO algorithm and the Multi
RDPSO algorithm under the 100 meters square environment. Also, Figure 5.4 rep-
resents the data collected in Table 5.4, from the figure we can deduce that the multi
RDPSO algorithm is 41 percent faster than the single RDPSO, and this comes from
the overlap in time while transporting multiple objects in the MRDPSO algorithm
while in the single RDPSO, the two targets are transported in two different time in-
tervals. As for Figure 5.5, it represents the data collected in Table 5.5, the same is
applied for the 100 meters square environment, but from the figure we deduce that
the MRDPSO is 35 percent faster than the single RDPSO.

TABLE 5.4: Single RDPSO vs Multi RDPSO Sample collected Data for
50 meter square environment area

Single RDPSO Single RDPSO
in sec

Multi RDPSO Multi RDPSO
in sec

17:56 1076 sec
21:05 1265 sec

19:33 1173 sec
24:33 1473 sec

22:47 1473 sec
22:47 1367 sec
10:25 625 sec

15:20 920 sec
14:00 840 sec
29:08 1748 sec

43:35 2615 sec
39:05 2345 sec
08:36 516 sec

11:39 699 sec
10:05 605 sec

TABLE 5.5: Single RDPSO vs Multi RDPSO Sample collected Data for
100 meter square environment area

Single RDPSO Single RDPSO
in sec

Multi RDPSO Multi RDPSO
in sec

16:13 973 sec
27:59 1679 sec

23:23 1403 sec
16:53 1013 sec

25:43 1543 sec
23:11 1391 sec
24:55 1495 sec

46:16 2776 sec
43:05 2585 sec
09:00 540 sec

12:00 720 sec
12:00 720 sec
23:57 1437 sec

23:57 1437 sec
17:00 1020 sec
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FIGURE 5.4: Single RDPSO vs Multi MRDPSO 50 meter square envi-
ronment area

5.2 Performance measures

In this section, we entail our comparison with the results collected from three se-
lected papers. These papers are:

1. Ghosh, Konar, and Janarthanan [1]

2. TORABI [2]

3. Kube and Bonabeau [3]

We already defined our metrics of comparison with each paper in Chapter 4. We
chose one metric per paper, these metrics are:

• Environment Runtime versus number of transportation steps

• Environment Runtime versus the mass of the target

• Environment Runtime versus the area of the target

As we discussed in Chapter 4, the conducted comparison is a bit different since we
implemented a multi object transportation algorithm while the three selected pa-
pers use single transportation algorithms. We calculated the average time needed
for transportation in our experiments and divided this number by the total number
of objects that got transported, and compared the new calculated results with the
results obtained from the three selected papers.



Chapter 5. Experimental Results 56

FIGURE 5.5: Single RDPSO vs Multi MRDPSO 100 meter square en-
vironment area

5.2.1 Comparison with Ghosh, Konar, and Janarthanan [1]

This paper is concerned with the problem of box pushing from its position to a tar-
get position. It depends on two similar robots having to decide on box’s trajectory
of motion taking into consideration avoiding a static number of obstacles in the en-
vironment. The robots in this case have the ability to change the position of a large
box from its current position to the target end position. The process of changing the
box position contains two main functions, turning and translation. In the first func-
tion, turning, the robots push and pull the box while in the translation; the robots
only push the box. The technique used in this paper depends on both the two robots
standing at the same side of the box they need to push and then both apply perpen-
dicular forces on it. In order to avoid obstacles in the pushing direction, a penalty
function is used.

We will compare our algorithm to this algorithm along with the algorithm the au-
thors used to compare their work and results to. Figure 5.6 shows the two maps
used by the authors where a box is pushed using the proposed algorithm to go all
the way till the end point. In the left figure, the number of steps used to reach the
target position is ten steps while in the right figure, it needed 13 steps to do the job.

We are comparing our results which are the results of a multi object transportation
system with the results of a single object transportation system. In order to make it
fair, we will calculate the average time needed for transportation in every environ-
ment and then divide it by the number of transported objects which is in our case
2. This roughly gives us the average time needed to transport one object with our
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implemented algorithm.

FIGURE 5.6: World maps from Ghosh, Konar, and Janarthanan [1]

In their work, they calculated the next position for the target taking into considera-
tion the walls and then moved the target to the new position, they considered this as
the step to transport the object, so the robots stopped after reaching the calculated
position, calculate a new position then move the target to it. In our case, we assume
the robots stop 2 times per cube, to make sure they are moving in the right direction
and make sure their orientation is correct.

For the 50 meters square environment, we placed our targets, one target is placed 5
cubes away from the end position and the other target is placed 6 cubes away from
the end position which maps to 10 and 12 steps respectively. As for the 100 meters
square environment, one target is placed 6 cubes away from the end position and
the other target is placed 7 cubes away from the end position which maps to 12 and
14 steps respectively.

Table 5.6 shows the comparison between the new calculated results for our algo-
rithm and the results obtained from the paper, we added the numbers obtained in
the paper for both the NSGA-II algorithm and the MOPSO algorithm and next added
our results to the MRDPSO algorithm. All the values for the time are presented in
seconds and our results are highlighted in red in Table 5.6.

5.2.2 Comparison with TORABI [2]

In order to evaluate the collective transport strategy in a 2D planar environment,
a decentralized algorithm was implemented in a simulation environment by Sina
Torabi, on small mobile robots’ platform, where he used the same four phases we
used and discussed in cooperative transport that are

• Decision phase
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TABLE 5.6: Comparison between our results and the obtained results
from Ghosh, Konar, and Janarthanan [1]

World Map Method Total Time Steps/ En-
vironment

1
NSGA-II 696.57 sec 11
MOPSO 649.51 sec 10
MRDPSO 460 sec 11

2
NSGA-II 857.94 sec 13
MOPSO 810.36 sec 13
MRDPSO 719 sec 13

• Recruitment phase

• Organization phase

• Transport phase

Individual trial was considered successful if robots succeed to transport the target
within a certain time threshold. The threshold varied with the mass of the target in
such a way that for transporting a light target, robots have less time than when they
are transporting a heavy target. In addition, the study key findings show that the
mass of the target slightly decreased the efficiency, indicating that team coordination
is more difficult when dealing with a heavier object, which could be resolved using
more robots.

More than 90% of the transportation were carried out in time. In order to compare
the effect of the recruitment process on transportation time, for each target’s mass,
50 trials were made, 25 trials with recruitment process and 25 without it. The exper-
iment results indicated that in order to transport the object in more specific period
of time, it’s recommended that the robots use the recruitment process. Besides, re-
sults showed that a heavier target required more time to be transported and its path
was longer. When the target is heavy it will only move when a sufficient number of
robots are pushing it in the same direction.

In our experiments, we depend on the recruitment technique to get more robots to
help in transporting the target, so we will compare with the author taking into con-
sideration the data for the recruitment strategy, as discussed in previous section.
Since we implemented an algorithm for multi object transportation and this paper
also is concerned with single object transportation, we will compute our average
time and divide it by two, that resembles our number of targets. In this case, we will
also divide the total mass of the targets transported by the number of transported
target that is 2 to get the average weight transported. Table 5.7 shows the results of
our implemented algorithm in transporting a target of size nearly 2 kilograms and
another target of size nearly 2.5 kilograms against the results obtained from the pa-
per that are for two targets one of size 3 kilograms and the second 4.5 kilograms. All
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the values for the time are presented in seconds and our results are highlighted in
red in Table 5.7

TABLE 5.7: Comparison between our results and the obtained results
from TORABI [2]

Target Mass Strategy Average Time
2 kg Recruitment Method 531 sec
2.5 kg Recruitment Method 675 sec
3 kg Recruitment Method 186.7 sec
4.5 kg Recruitment Method 331.8 sec

5.2.3 Comparison with Kube and Bonabeau [3]

In the experiment done by C. Ronald Kube, Eric Bonabeau for cooperative transport
by ants and robots to compare the efficiency of transporting multi objects as a func-
tion of system size and object geometry in two experiments. The authors divided
their whole experiment into three phases:

• Finding the box

• Move to the box

• Push to the goal

The first phase begins with the robots executing find-box and quickly disperses in
the environment. Shortly thereafter, those robots that were facing the box and suf-
ficiently close would move towards and make contact with a box side using the
move-to-box controller.

In the second phase, some of the robots incorrectly positioned for pushing, as de-
termined by the push-to-goal controller, begin moving counterclockwise around the
box perimeter searching for an open spot on a correct side. The obstacle avoidance
behaviors keep a robot away from occupied positions on a box side.

In the third phase, the box moves towards the goal position. Once a net force suffi-
cient to move the box occurs, the box begins to translate and possibly rotate. During
the box movement phase a robot continuously determines if it remains on the correct
side for pushing. A robot located at the edge of the pushing swarm may suddenly
lose sight of the goal and begin repositioning. The resulting drop in pushing force
may be sufficient to halt the box movement until another robot joins the group effort.

The dynamics of both the box and the robots are such that the path taken by the
box towards the goal is seldom straight. Rather, the box movement process can be
said to converge towards the goal since its trajectory is the net result of several force
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vectors applied by individual robots.

We will compare our results against this paper with respect to the area of the target
and environment runtime taken to transport the target. In this paper, the authors
used 4 different box types, Box A is of size 42 centimeters square, Box B is of size 84
centimeters square, Box C is an extension of Box A by adding a second frame and
Box D is a rounded object of diameter 84 centimeters. To conduct their experiments,
they used a total of six robots, each of diameter 18 centimeters.

In our experiments, we have three different sizes for the targets we used. A 6 cen-
timeters square cuboid, a 10 centimeters square cuboid and a 12 centimeters square
cuboid. Our ePuck robot is of diameter 7 centimeters. Through the transportation of
the targets, we used a variety of three to six robots to transport each target. As men-
tioned in the two previous comparisons, in order to be able to compare our multi
object transportation results to their single object transportation results, we will take
the average time for our experiments and divide it by two. In order to get the aver-
age size of the target transported we will also divide the total weights of the targets
by two.

We will only compare with Box A and Box B, since Box C is an extension of Box A
but we do not have the its exact area and Box D is a rounded box and all our tar-
gets are cuboid targets. Table 5.8 shows the results of our implemented algorithm in
transporting a target of area nearly 9 centimeters square and another target of area
nearly 11 centimeters square against the results obtained from the paper. All the
values for the time are presented in seconds and our results are highlighted in red in
Table 5.8.

TABLE 5.8: Comparison between our results and the obtained results
from Kube and Bonabeau [3]

Target Area Average Time
9 cm2 531 sec
11 cm2 675 sec
42 cm2 around 180 sec
84 cm2 around 110 sec

5.3 Challenges

In this section, we will explain the challenges we faced in order to implement our
MRDPSO algorithm and how we were able to solve them. The challenges we faced
were:

1. Estimating the size of the target
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2. Recruiting the needed number of robots

3. Dispatching of the robots

4. Communication between the robots

5. Positioning the robots to push towards the final destination

5.3.1 Estimating the size of the target

This challenge was one of the medium sized challenges that faced us through our
implementation of the algorithm, estimating the size of the target in order to decide
the number of robots needed to be able to transport it. We first thought of rotat-
ing around the body of the target and calculating the distance covered from both
the speed of the robot and the time taken to rotate around the target, this method
failed for two reasons, first reason is the robot was unable to find its start position
so it kept rotating around the target and second reason, even if succeeded we would
have been able to calculate the perimeter of the target which will not be of use to get
the area of the target.

The second method we decided to try is the method we used in our thesis to cal-
culate the area of the target and from which with the assumption that every three
centimeters square of area can be transported by one robot, we were able to calcu-
late the number of needed robots to transport the target. In this method, we left the
robot to rotate around the target and collect the positions of the corners of the target,
and with the assumption that we will use cuboid targets, we were able to calculate
the distance between first and second corner to get the length, and calculate the dis-
tance between the second and the third corner to get the width. Knowing the length
and the width, we were able to calculate the area and hence the needed number of
robots for transportation.

5.3.2 Recruiting the needed number of robots

Recruiting the needed number of robots is a crucial task in transport. Without the
extra number of robots, the robot that spotted the target will not be able to transport
it alone and hence no transportation can take place. Recruitment can be done in one
of two ways, the first way is after the robot spots the target to be transported it re-
turns back to the start position and recruit more robots there and then moves back
to the target to start transporting it or the robot spots the target and start recruiting
the robots in the area surrounding the target.

In our experiments, we decided to go with the second option. It was challenging
synchronizing this type of communication between the different robots. We started
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by sending recruit signal from the recruiting robot to the available robots in the envi-
ronment and wait for the reply signal from the robots to be recruited. At the begin-
ning this was not enough, as we did not have any type of identification, so we were
receiving multiple signals without knowing which signal belongs to which robot,
hence no way to know which robot got recruited. So, we started sending global sig-
nal to recruit and each robot replies back with its identification. Second issue we
got was that the robots got recruited for both targets since we did not specify any
identification to the target, So, we added the target identification to the sent signal.

5.3.3 Dispatching of the robots

The dispatching of the robots was another issue that faced us. By orientation of the
robots we mean, after recruitment is established, we need the robots that got re-
cruited to go to the position of the target. Orientation can be done in several ways.
In our experiments, we first decided to move the robots to the first position retrieved
by the robot that spots the target. This was not successful as VREP simulator does
not have any function that makes the robot move to a specific location. So, we de-
cided to use the orientation function available in the simulator. And this was not
also easy due to the difficulty presented in handling the orientation of the robot in-
side the simulator just provides the Euler angles.

At this point, we decided that we will implement our own function ’orient_robot’ to
handle the movement of the robots to the positions we desire along with readjusting
the orientation of the robots. In our function, we have four cases that the robot can
be in any of them and we move from one case to another, until the robot reaches the
desired position. The four cases are:

• The robot is at a position where the x point and the y point are larger than the
points where the desired position.

• The robot is at a position where the x point is smaller than the x point of the
desired position and the y point is larger than the y point of the desired posi-
tion.

• The robot is at a position where the x point is larger than the x point of the
desired position and the y point is smaller than the y point of the desired posi-
tion.

• The robot is at a position where the x point and the y point are smaller than
the points where the desired position.

These cases are illustrated more in Figure 5.7 and Algorithm 2 shows the pseudo
code for the implementation of our function as for the rest of the cases, they are
straight forward, the robots just move in straight line towards the target. The straight
line is decided according to the position of the robot with respect to the target.
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FIGURE 5.7: Orient Robot Function

Algorithm 2 Orient Robots Function

1: procedure ORIENT_ROBOTS(CURRPOS, PREVPOS, LEFTVEL, RIGHTVEL, CASE)
2: wait← 1
3: if case == 1 then . Check cases in Figure 5.7
4: if currpos.x > prevpos.x then . Compare positions to get direction
5: if currpos.y > prevpos.y then
6: velLeft← leftvel . Decide robot speed according to direction
7: velRight← rightvel
8: wait← 0
9: else if currpos.y < prevpos.y then

10: velLeft← - leftvel
11: velRight← rightvel
12: end if
13: else if currpos.x < prevpos.x then
14: if currpos.y > prevpos.y then
15: velLeft← leftvel
16: velRight← - rightvel
17: else if currpos.y < prevpos.y then
18: velLeft← - leftvel
19: velRight← rightvel
20: end if
21: end if
22: else if case == 2 then
23: // same as case 1 but with adjusting speed according to position
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Algorithm 2 Orient Robots Function (continued)

24: else if case == 3 then
25: // same as case 1 but with adjusting speed according to position
26: else if case == 4 then
27: // same as case 1 but with adjusting speed according to position
28: end if
29: return wait
30: end procedure

5.3.4 Communication between the robots

Communication between the robots was one of the challenges we knew we will face
from day one. Handling a huge number of robots and the communication between
them can be very challenging. In our experiments, since we are using simulator
in our case VREP simulator, we used the concept of the signals. We overcome the
problem of communication by sending signals between robots. One more important
thing to communicate through any communication between robots is the target to
be transported identifier, as we have multiple targets that can be transported at the
same time. So, to avoid conflicts, we send the signal with the target identifier and
each robot checks whether the communicated target is the one the robt is recruited
to transport or not.

If we want to send some global signal, we do not need to add any identifiers to the
robots to send to. While if we want to send a specific signal to a specific robot, first,
we need to communicate this robot’s identification to the robot controlling the re-
cruitment process for example at the start of the communication between them, and
the robot responsible for the transportation process afterwards sends the signal with
the robot identification and each robot checks whether this signal is related to it or
not. The kind of signal that targets specific robots are the signal to inform a specific
robot that it is recruited for a specific target and the signal with the position to move
to near the target to be ready for the transportation process.

5.3.5 Positioning the robots to push towards the final destination

Positioning the robots to push towards the final destination was one of the huge
challenges that faced us. As mentioned earlier controlling the orientation of the
robot from VREP was not easy and we had to invent our own logic to do so. In
order to do this, after the robots reach the position they were supposed to reach,
they start rotating in order to face the target. This is performed by using the sensors
placed on the robots, checking the distance between the sensors and the target and
reaching the position in which the two sensors at the front of the target reading the
same distance. At this point, the robot stops its movement and waits for a signal to
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start transporting the target, this signal is sent by the robot responsible for the trans-
portation process, and it sends this signal when all the robots that got recruited are
ready for transporting the target.

We have another way of positioning for the robots to push in the right direction,
and that is deciding which side the robots should go to in order to start pushing
the target or in another words, the best suited place to proceed with the transporta-
tion process. To accomplish that, we use the corners calculated by the robot that is
responsible for the transportation process, we checked the distance between each
corner and our end position and decided to make all the robots move towards the
farthest side and orient themselves to look to the target so that when they start push-
ing, they are pushing in the direction of the end position.

5.4 Conclusion

In this chapter, we presented the results we collected from all our experiments, run-
ning simulation on the VREP simulator using the ePuck robot as our transporting
robots. We were able to transport two objects at the same time which was the tar-
get aimed to be reached by this thesis. Then, We compared our results with the
results obtained from three selected papers that are Ghosh, Konar, and Janarthanan
[1], TORABI [2], and Kube and Bonabeau [3]. Finally, we explained the challenges
we faced throughout our work and discussed how we overcame them.

In our comparison with the first paper, we were able to transport our objects in
time less than the time needed by the two algorithms presented in the paper. In
the second paper, our results were much higher than those obtained from the pa-
per although we are transporting less weight objects, but this is due to the different
robotic nature between our robots and the robots used in this paper, the author uses
five robots each of weight 3 kilograms to transport a 3 kilograms object, while we use
from three to six robots each of weight 200 grams to transport two targets of weight
1.5 kilograms and 2 kilograms. Finally, the third paper, during our comparison, our
results were also higher that those obtained from the paper, but we can say this is
due to the variation in the robot size since they are using six 18 centimeters robots
while we are using from three to six 7 centimeter robots.
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Chapter 6

Conclusion

Swarm robotics has been gaining momentum in the past decade. It originates from
nature by investigating behavior of some insects like ants and bees. Ants use their
technique which is leaving traces of pheromones while bees have their technique
which is dancing. In this thesis, we have been working with cooperative transporta-
tion with the aid of swarm robotics. We discussed the problem at hand which is
transporting multiple objects at a time. Going through literature, we were able to
find multiple algorithms that investigate cooperative transportation using swarm
robotics.

We implemented a novel algorithm for the matter at hand based on the RDPSO algo-
rithm to accommodate transporting multiple objects at a time, hence calling our al-
gorithm MRDPSO. We conducted the experiments and collected the results using the
VREP simulator to simulate our environment along with using ePuck robots as the
transporting robots. We compared the results of our MRDPSO algorithm with the
results provided by three published papers that are Ghosh, Konar, and Janarthanan
[1] which we compared with in terms of time and steps taken to transport the target,
TORABI [2] which we compared with in terms of time and mass of the target, and
Kube and Bonabeau [3] which we compared with in terms of time and area of the
target.

We were able to achieve the aim of this thesis, which was multi object transporta-
tion. We were able to transport two targets at the same time to the final position.
We presented some comparisons to some experiments on our system and our im-
plemented algorithm. We were able to learn from the failures of the experiments in
order to avoid failed experiments. We also compared to the three selected papers
and were able to get better transportation time than that obtained by Ghosh, Konar,
and Janarthanan [1], but got results much higher than those obtained by TORABI [2]
and Kube and Bonabeau [3].
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6.1 Future Work

In this section we will discuss the enhancements that we can do in the MRDPSO
algorithm. These enhancements are:

• Estimating the size of the target technique enhancement in order to get better
results for the target size and help with decreasing the time to get the area of
the target. Size estimate can be enhanced by using different technique rather
than what we used, like using centroid size estimation

• Signaling system enhancement in order to help with the communication be-
tween the robots. One thing that needs enhancement in signaling is when the
recruiter robots starts to recruit other robots to take into consideration their
distance from its position and recruit those who are near it rather than sending
a signal that can be received by any robot in the environment

• Transportation technique enhancement in order to speed up the transporting
process, one technique worth trying is for the robot to push the target for num-
ber of seconds and to stop to assess its position with respect to the target and
maybe reorient itself in better position to continue pushing

• Obstacle avoidance technique while transporting enhancement in order to avoid
obstacles while transporting the target to the end position

• Weight variation to try and reach the maximum weight that can be transported
by our implemented algorithm.

• The number of transported objects can be added as a new parameter in run-
ning experiments and collect the same data again, then compare the new re-
sults with the results already obtained by adding the number of transported
objects as a new metric for the comparison.
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Appendix A

Platform Determination

Appendix A will discuss our working environment. As seen in literature there are
two ways to experiment on swarm of robots, either using a simulator program that
you deploy any amount of robots on, run your experiments and get the results or
using real robots to run your algorithm on and also, get your results. Each method
has its advantages and disadvantages, some advantages of simulators are you can
deploy any number of robots as you wish, you can have crashes without harming
any hardware and you get good results very near to real results but the disadvan-
tage is the results are not as exact copy of the results you get from experimenting
on the real robots as something can’t be interpreted in the experiments like friction.
As for real robots, the advantage is you get accurate results but the disadvantage is
you can’t deploy as much robots as you can, as robots are expensive to get leading
to poor experimentations.

In this thesis, we will use a simulator to conduct our experiments. So, two major
comparisons will be presented. The first comparison is a comparison between dif-
ferent robots available now, sure not all of the available robots, we chose four of
them that are mostly used in the literature. The four robots are AntBot, ePuck, Swar-
manoid and finally Kilobot. The second comparison will be related to the simulators
to run the experiments on. The famous simulators nowadays for robotic swarm are
v-rep, Webot and Argos and we will present a comparison between all the three.

A.1 Robotic Platforms

A.1.1 AntBot

AntBot is based on Pololu 3pi Robot with the addition to its expansion kit to increase
the power and functionality of the simple robot.

• Locomotion

– Two wheels that are accommodated with two direct current motors.

• Communication and Sensing
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– 5 IR emitter and receiver (phototransistor) pairs facing the ground.

– MMA7455 3 axes accelerometer for collision detection.

– Wixel Programmable USB wireless module “2.4GHz radio” used in com-
munication between AntBots or between Antbots and PC.

• Controller

– ARM Cortex M3 with 96 MHz and 32KB RAM and 512 KB FLASH (SPI,
I2C, UART, PWM, ADC and GPIO) is used as the main control unit.

– ATmega 328P is used to control the motors and IR sensors plus other com-
ponents on the 3pi robot.

• Power System

– AntBot is equipped with 4 AAA Ni-MH rechargeable batteries.

• Cost

– AntBot cost around 250 USD per robot.

FIGURE A.1: AntBot Robot.

A.1.2 ePuck

• Locomotion

– All wheels pf ePuck robot shown in Figure A.2 adopted from Cianci,
Raemy, Pugh, et al. [29] are accommodated with stepper motors.

• Communication and Sensing

– An extension connector to allow the addition of new functionalities on an
extension board.

– RS232 and Bluetooth interface to communicate with a host computer.

– A 16 positions rotating switch allows an input from the user, for instance
to set a running mode.

– Reset button and programming connector as usual.
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– 8 IR proximity sensors are placed around the robot but not in a regular
way (more sensors in front of the robot).

– An accelerometer with 3 axes.

– Three microphones and a speaker for sound capturing and generation.

– A 640x480 color pixels resolution camera is placed inside the body and
looks forward.

– Can be used only through windowing or subsampling.

– 8 red LEDs are placed around the robot body to display patterns. The
camera should be able to see the other robots with their patterns.

• Controller

– The e-puck is using a Microchip dsPIC microcontroller. This microcon-
troller complies with the educational criteria of flexibility because:

* It is a 16-bit processor with a 16-entry register file.

* Have a digital signal processor (DSP) unit.

* It runs at 64 MHz and provides 16 MIPS of peak processing power.

* The instruction set is mostly orthogonal 8 and rich; in particular, it
contains multiply-accumulate and hardware-repeat instructions suit-
able to drive the DSP unit, for instance to efficiently compute scalar
products and fast Fourier transforms.

* Finally, it is supported by a custom tailored version of the GCC C
compiler.

* This version has an 8 KB of RAM and 144 KB of flash memory.

• Power System

– Single power supply. All electronics runs at 3.3V, except the camera need-
ing an additional 1.8V. LiION technology based battery is used, has 5Wh
capacity and is sufficient for about 2-3 hours of intensive use. The battery
can be removed and recharged externally. A battery protection is imple-
mented.

• Cost

– E-puck costs around 854 U.S. dollars per robot.
As seen in http://www.gctronic.com/shop.php

A.1.3 Swarmanoid

Swarmanoid robot consist of three different groups of robots as shown in Figure A.3
adopted from Dorigo, Floreano, Gambardella, et al. [30], the first group of robots is
called the foot-bots, these robots are small autonomous robots that can move on both

http://www.gctronic.com/shop.php
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FIGURE A.2: ePuck Robot.

even and uneven terrains, capable of self-assembling and transporting objects. The
second group of robots is called the hand-bots, these robots are small autonomous
robots that can climb vertical surfaces and can manipulate objects. Finally, the third
group of robots is called the eye-bots, these robots are small autonomous flying
robots that can attach to the ceilings and analyze the environment to give informa-
tion for the other two groups, the foot-bots and the hand-bots. Swarmanoid has no
centralized control and relies on continued local and nonlocal interaction to produce
a collective self-organized behavior.

• Locomotion

– Foot-bots is 28 cm high and 13 cm diameter robot that has differential
drive motion control that is composed of two 2-W motors each powers a
rubber a rubber track and a wheel.

– Hand-bots

* No ground mobility but it can climb vertical structures and grasp
small objects to bring them to the ground for the Foot-bots to trans-
port them.

* Magnet for attaching to ferromagnetic ceiling and a motor to switch
the magnetic field.

* Two fan propellers to provide the robot with orientation control.

* Rope launcher.

* 2 grasping hands

– Eye-bots

* Flying robot for indoors environment that can navigate through nar-
row corridors.

* Ceiling attachment mechanism to scan the environment while dis-
abling flying systems.

* Navigate using the sensory information provided from other static
eye-bots, this allows indoor navigation while avoiding the use of
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GPS, 3D tracking camera, illumination dependent visual processing
or expensive laser scanning.

* Eye-bots uses a quadrotor-like propulsion configuration but with a 4
X 2 coaxial rotor system.

• Communication and Sensing

– Foot-bots

* 24 IR sensors facing outwards for obstacle detection.

* 12 IR sensors facing downwards for ground detection

* Radio frequency identification reader and writer with antenna.

* 3- Axis accelerometers and gyroscope for orientation measurements.

* Gripper module that enables self-assembly between foot-bots and
hand-bots this is done through a docking ring and a gripping mech-
anism.

* 2-Dimensional force sensor to measure the effort applied on the dock
ring.

* RGB LEDs for color based communication.

* 4 IR distance sensors.

* Camera

* LED beacon

* WiFi

– Hand-bots

* High-resolution camera.

* RGB LEDs for communicating with robots.

* 4 IR distance sensors.

* Color VGA camera and 12 distance sensor in each arm

* WiFi

– Eye-bots

* Range and bearing communication device for coordinated movement
in 3-D.

* RGB LEDs for communicating with other robots.

• Controller

– All robots use a distributed multiprocessor architecture where the main
processor is responsible for intensive task such as vision and high level
control and other microcontrollers are used for real-time sensing and con-
trolling the actuators.

– Main processor: 533-MHZ i.MX31 ARM11 with 128 MB of RAM and 64
MB of flash.
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– Microcontrollers: DsPIC 33 that has fixed point and DSP instructions

• Power System

– Each robot is powered by lithium polymer battery with 3.7 V and 10 Ah.

– A super capacitor is used to power the robot for 10 sec for battery ex-
change.

FIGURE A.3: Swarmanoid Robot. Left is the foot bot then the hand
bot and finally the eye bot.

A.1.4 Kilobot

Design

• Locomotion

– Kilobot as shown in Figure A.4 adopted from Rubenstein, Ahler, and
Nagpal [31] uses two vibration motors for locomotion.

– A forward force is generated from the centripetal forces generated from
the motor vibrations.

– Slip-stick principle principle explains the convertion of the motor vibra-
tion to a forward force.

– Vertical rotation motion around the axis of motor is generated by activa-
tion of that motor.

– By controlling the magnitude of vibration for the two motors indepen-
dently in a differential drive manner, the robot can move in a continuous
range from clockwise rotation, to straight forward, to counterclockwise
rotation.

– This enables the Kilobot to move approximately 1 cm/sec and rotate ap-
proximately 45 degrees/sec.

• Communication and Sensing

– The sensing of neighbors only includes distance sensing, not bearing sens-
ing.
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– In order to communicate with neighboring robots, each Kilobot has an in-
frared transmitter and receiver, which are located in the center of the PCB
and are pointed directly downwards at the table the Kilobot is standing
on. Both the transmitter and receiver have an isotropic emission or recep-
tion pattern. Which allow the robot to receive messages equally from all
directions.

– Additionally, both the receiver and transmitter are wide-angle, with an
angle of half power of 60 degree from the robot’s downward pointing
vertical axis. When the transmitter is active, any nearby robot can receive
the light emitted by the transmitting robot after it is reflected off the table,

– Kilobot can communicate at rates up to 30 kb/s with robots up to 10cm
(about 6 robot radii) away.

– There is also a visible light sensor on each robot, which can sense the
level of ambient light shining on the robot. That may be useful for other
collective applications such as collective transport.

• Controller

– A 32K memory Atmega328 microprocessor is used, which runs at 8 Mhz.
This microprocessor has:

* Two pulse width modulation (PWM) channels used for controlling
the vibrating motors.

* 10-bit ADC used for measuring the incoming infrared light intensity.

* Self-programmable memory used to update the robot’s program.

* Low-power sleep mode.

– C language is used for programming kilobot.

• Power System

– A 3.4V/160 mAh lithium-ion battery is used.

– The robot can run for 3 to 24 hours depending on the robot’s activity level.

– 30 µA is only drawn while in low-power states.

– The charging will automatically stop once it is fully charged.

• Limitations

– There is no real form of odometry. This makes moving precisely over long
distances or for a long time difficult.

– Another limitation to this locomotion is that it cannot move over rougher
surfaces, requiring a smooth surface such as a dry erase surface to work.

• Cost

– The Kilobot design uses about $14 worth of part.

– This cost does not include the assembly of components on the PCB
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FIGURE A.4: Kilobot Robot.

Scalable Collection

An overhead infrared controller is used to allow the applying of scalable operation
on all robots at the same time without the need for applying it on each robot indi-
vidually. An operator sitting at a computer-based control station in turn controls the
overhead controller.

• Power System

– A low-power sleep mode is used instead of standard off state “power is
switched off”, in this mode the entire components are switched off except
microprocessor is in sleep mode.

– Every one minute the microprocessor wakes up to check wakeup signal
from the controller, if a wakeup is received the robot is switched back on.

• Charging

– Charging process occurs by placing the entire swarm over a conductive
surface that will be connected to 6vdc then place a conducting board, on
top of the swarm which act as the ground as shown in Figure A.5 adopted
from Rubenstein, Ahler, and Nagpal [31].

• Programing

– In this bootloader sector of memory, Kilobot has a program that receives
infrared messages from the overhead controller, which contain portions
of the new desired main program code. It then writes these portions of
code to the appropriate location in the primary sector of memory.

After exploring all famous four robots in the literature and knowing their capabil-
ities, we chose ePuck as the robot to use in our experiments as it has the physical
capabilities we need to transport an object either by pushing or whatever technique
we decide. Also, it has variety of ways of communication to maintain a channel be-
tween the robot and other robots in the environment.
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FIGURE A.5: Kilobot Robot Charging.

A.2 Simulation Platforms

A.2.1 VREP

V-rep is considered the Swiss army knife of all the famous simulators available in
literature due to all the features, function and APIs that it provides. These features
as mentioned on the simulator’s website Robotics [32] and include

• Cross platform (Windows, Mac and Linux).

• 6 approaches for programming (Embedded scripts, plugins, add-ons, ROS
nodes, remote API clients or custom solutions).

• 7 programming languages (C/C++, Python, Java, Lua, Matlab, Octave and
Urbi).

• 400+ API functions.

• 100 ROS services, 30 publishers, 25 subscribers and extendable.

• 4 physic engines (ODE, Bullet, Vortex and Newton).

• POV-Ray integrated tracer.

• Full kinematics solver (IK and FK for any mechanisms).

• Mesh, octree and point cloud interference detection.

• Mesh, octree and point cloud minimum distance calculation.

• Built-in custom UI.

• Path/motion planning (holonomic in 2-6 dimensions, non-holonomic for car-
like vehicles and motion planning for kinematic chains).

• Data recording and visualization (time graphs, X/Y graph or 3D curves)

• Model browse with drag/drop functionality (also during simulation)

• Realistic proximity sensors (minimum distance calculation within a detection
volume)

• Integrated shape edits modes.
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• Built-in image processing (fully extendable).

• Multi-level undo/redo, movie recorder, simulation of painy dispensing, ex-
haustive documentation, etc.

• Surface cutting simulation.

• Fully integrated reflexes motion library type 2 and RRS-1 interface specifica-
tions.

V-rep is considered an extremely customizable simulator. Every detail in this simu-
lator is customizable, even the simulator itself can be personalized and customized
to perform as needed. This can be achieved through the use of the Application
Programming Interface (API). As mentioned above, V-rep provides six different ap-
proaches for coding or programming, these six approaches can be used all at the
same time or mix and match between them to get the best functionality needed. The
model, scene or simulator’s control entity can be situated inside any of

• Embedded script: this is the easiest approach and mostly used. It is used in
writing the Lua scripts. This approach can flexibly customize the scene, simu-
lation and even the simulator.

• Add-on: this is used to customize the simulator itself, also, used in writing Lua
scripts, the add-on can auto run or be called as a function and is supposed to
be generic, i.e. not designed for a specific model or scene but the functionality
should be bound to the simulator.

• Plugin:

• Remote API client: this allows the user to create functionalities on the robot
or on another machine or use external application and still connect it to V-rep
using API commands.

• ROS node: using the robot operating system, an external application can com-
municate with V-rep, this external application can be located on the robot or
another machine.

• Custom client/server: this method needs to work with a plugin/script/communication
mean (socket, pipes, etc). It is more flexible but need a lot of work to be done.

Communication and messaging mechanisms in V-rep is performed through different
methods as shown in A.6 adopted from Rohmer, Singh, and Freese [33].

1. API calls from the main client application, the APIs can be either C/C++ or
non-C/C++ application if the language supports calling to C functions.

2. Cascaded execution of child scripts.
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3. Main script/child script/callback script/customized script calling the Lua API
to the regular API. All calls are guided to the V-rep engine except for the cus-
tom functions written in Lua that call plugins.

4. Callback calls from the Lua scripts from the simulator to Lua custom function
of the plugins.

5. Callback calls of events from simulator to plugins.

6. Remote APIs call from other robots, other machines or external applications.

7. Data exchange through ROS between V-rep and other robots, other machines
or external applications.

8. Connections through sockets/pipes/... etc. to/from external applications.

9. An add-on calling the Lua API to the regular API. All calls are guided to the
V-rep engine except for the custom functions written in Lua that call plugins.

10. Callback calls originated from V-rep to callback scripts.

11. Execution calls originated from V-rep to customized scripts.

FIGURE A.6: V-rep communication and messaging mechanisms.

V-rep provides very powerful calculation methods that can be functions, modules.
These methods are not directly connected to one entity (say sensor or actuator) but
can be used to connect to more than one entity. These modules include

• Collision detection module
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• Minimum distance calculation module

• Inverse kinematic calculation module

• Geometric constraint solver module

• Dynamics module

• Path and motion calculation module

A.2.2 WebotsTM

WebotsTM is made to be easy to use and very powerful simulator due to the pres-
ence of multiple implemented functions in it. These features as mentioned on the
simulator’s website CYBERBOTICS [34] and include

• Modeling and simulating any type of robots (legged, wheeled or flying).

• Sensors and actuators library.

• 200 API functions offered in 6 different programming languages (C/C++, Java,
Python and Matlab), also 20 classes of APIs written in C/C++, Java or python
and can be linked with external applications.

• Physics simulation using open dynamics engine.

• Simulation videos for web and public presentations.

• Available simulation examples with source code for commercial robots.

• Multi-agents simulation with facilities regarding local and global communica-
tion.

• Collision detection customized to the simulated object.

• Cross platform (Windows, Mac and Linux).

• Simulating infinite number of robots in the same scene.

• Interface for Matlab using the 200 functions of the Matlab API.

• ROS interface using either C++ or python programming languages, taking ad-
vantages of all ROS stacks like OpenCV, . . . etc.

• Programming in supervisor’s mode available only in Webots pro.

• Physics plugin programming available only in Webots pro.

• Built-in screenshots and video creation for visualizing the produced results.

• 3D graphics.
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• Customizable source codes that can be integrated easily in the integrated source
code editor.

• Scene editor with full-featured functionality.

• Easy design and integrate of robots created on CAD tools.

• Available libraries for available commercial robots.

• Indoor and outdoor libraries for objects.

• Inter robot communication.

• Wide range of sensors

• Simulating of real camera devices and process the images.

• LIDAR sensors (e.g. kinect, . . . etc.)

• Display devices to display whatever needed from the robot’s controller.

• Motors that can be customized as needed.

• Full ePuck robot with controller that is accurately calibrated.

Next let’s discuss the available sensors and actuators in Webots simulator. In Webots,
there is a fully integrated library for sensors and actuators to connect and calibrate
on any robot. The sensors library includes

• Distance sensors.

• Range finders.

• Light sensors.

• Touch sensors.

• GPS (global positioning sensor).

• Cameras (1D, 2D, color and black and white).

• Compass.

• Position sensors for servos.

• Receivers.

• Inclinometers.

As for the actuators, the actuators library includes

• Servos.

• LEDs.
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• Independent wheel motors.

• Differential wheel motors.

• Emitters.

• Grippers.

WebotsTM simulator enables fast simulators due to the use of virtual time in its sim-
ulation system. This helps the running of experiments much faster than running it
on real robots. Subject to some criteria like the power of the computer used, along
with the difficulty of the chosen setup for the experiment, the simulation might reach
300 times faster than running the experiments on real robot. Also, the simulator en-
ables easy use of the graphical user interface while the simulation is running. Mul-
tiple options are provided by just a simple gesture like dragging the mouse. The
position of the viewpoint can be changed, the orientation can be adjusted and just
scrolling the mouse wheel can control the zoom. Dragging the mouse along with
pressing the shift key can help moving or rotating any object. All the mentioned
options and others make it easier for interactive testing.

WebotsTM simulator provides easy creation of difficult environment for experiments
and testing on mobile robots. Using advanced hardware accelerated OpenGL tech-
nologies that involve lighting; mapping of texture, applying smooth shading, . . . etc
can help with environment creation. Using the VRML97 standard, WebotsTM simu-
lator permits the importing of 3D models in the simulation scene from almost all the
3D modeling software. WebotsTM simulator provides optimization to any created
world without taking into consideration its size, build as large worlds as possible
and still Webots simulator will offer optimization for it. Webots simulator helps in
building complex robots by connecting multiple chains of servo nodes; this means
the creation of legged robots with multiple joints per leg, robotic arms, different
camera systems, . . . etc. as an example, placing and connecting multiple cameras
helps in creating binocular stereovision or vision systems with 360-degree angle as
mentioned in Michel [35].

A.2.3 ARGoS

ARGoS simulator is a famous simulator for being both efficient; due to the ability to
simulate any number of robots and flexible; due to that the simulator can be highly
customized and also, experiments can be extremely customized. ARGoS simulator
uses an extremely modular approach. This modularity can be shown in A.7 adopted
from ARGoS [36], the reasons behind this modularity are all aspects of simulations
can be overridden to provide maximum flexibility, all modules are implemented as
plugins that when simulating get loaded at runtime, ARGoS simulators permit the
addition of multiple functionalities like adding new sensors, adding new actuators,
adding visualizations, adding robots components, adding communication methods
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and adding new physics engines, ARGoS simulator proposes a specific plugin called
the loop functions that help in short lived simulation or specific extensions of exper-
iments and in ARGoS simulator exists an API for the controlling of robots. This API
is called the control interface and also exists on the real robot. This API helps the
smooth transition between simulation and real robots.

FIGURE A.7: ARGoS Modularity.

ARGoS provides multiple engines during simulation, and offers seamless transition
between these engines. The robots are deployed in the simulation environment and
starts moving around, along this movement, the robots shift between these engines
automatically. The physics engines provided by the ARGoS simulator is just a plu-
gin, the user freely chooses which physics engine to employ with the robots. Also,
the physical simulation space is sub divided into multiple regions, each region cor-
responds to a physics engine that controls it. Of course, not only physics engines
that distinguish the ARGoS simulator, communication is as important as physics en-
gines. ARGoS simulator presented the idea of a medium. The medium is the name
of a plugin implemented in ARGoS simulator that deals with all aspects of commu-
nication during simulations, i.e. range and bearing, wifi, . . . etc. this medium is
considered another type of engines that accomplish detailed simulations.

The ARGoS simulator supports the concept of multi core processing, where the sim-
ulation is subdivided between different master and slaves threads. In this concept,
the master thread delegate to the slave thread the task to perform. Each task cor-
responds to a single plugin update (a sensor, an actuator, a component and an en-
gine). The thread control is done while configuring the experiment. In ARGoS sim-
ulator, the work distribution among threads is performed by one of two methods,
the scatter-gather method or the H-dispatch method. The scatter-gather method is
shown in A.8 adopted from Pinciroli, Trianni, O’Grady, et al. [37], this method best
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suits the tasks with the same computational cost, i.e. conducting an experiment of
large number of similar robots. As for the H-dispatch method, it best suits the tasks
with diverse computational cost, i.e. conducting an experiment of large number
of different robots. Parallelism concept is fully integrated in the ARGoS simulator,
so the developer is not concerned with the shared resources problem. Also, this is
transparent for the developer of the plugins.

FIGURE A.8: ARGoS Parallelism.

Finalizing the comparison between the three simulators, going forward with our
work, we will be using v-rep simulator to conduct all experiments. This decision
was taken due to that the v-rep simulator is offering flexible simulator usage, very
easy environments implementation and manipulation and is offering the connection
with multiple APIs along with the help of plenty of programming languages. In
addition, v-rep simulator is open source software hence free to use and program
software, unlike WebotsRM simulator.
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Appendix B

MRDPSO Algorithm

Appendix B will contain a brief description of our implemented algorithm along
with its pseudo code.

B.1 MRDPSO Algorithm Pseudo Code

In this section, we discuss briefly our implemented algorithm as we already de-
scribed it in Chapter 4. The MRDPSO algorithm consists of twelve stages that the
moving robots move between them. All the robots start at the explore state and
proceed according to what surround them in the environment. They move with the
aim of finding the target that needs to be transported. The end of our algorithm is
reached when all the targets in the environment are transported. The pseudo code
for our algorithm is represented in Algorithm 3.

Algorithm 3 MRDPSO Algorithm

1: procedure EPUCK_MAIN

2: curr_state← ’explore’
3: while simulation_is_running do
4: if curr_state == ’explore’ then
5: object_found← move_random()
6: if object_found == ’object’ then
7: curr_state = ’obstacle’
8: else if object_found == ’target’ then
9: curr_state = ’target’

10: end if
11: if recruit_signal then
12: curr_state = ’reorientrobots’
13: end if
14: else if curr_state == ’obstacle’ then
15: // Obstacle avoidance technique
16: else if curr_state = ’target’ then
17: target_corners_size← 0
18: number_needed_robots← 1
19: number_recruited_robots← 1
20: max_number_robots← 0
21: curr_state = ’sizeestimate’
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Algorithm 3 MRDPSO algorithm (continued)

22: else if curr_state == ’sizeestimate’ then
23: if target_corners_size <= 4 then
24: target_corners← target_rotation()
25: else
26: calculate_area()
27: calculate_needed_robots()
28: curr_state = ’recruit’
29: end if
30: else if curr_state == ’recruit’ then
31: while number_recruited_robots <= max_number_robots do
32: send_recruit_signal()
33: wait_confirmation_signal()
34: if confirmation_signal == number_recruited_robots then
35: curr_state = ’preparetransport’
36: end if
37: end while
38: else if curr_state == ’waitingrobots’ then
39: calculate_recruiter_position()
40: object_found← move_to_position()
41: if object_found == ’obstacle’ then
42: curr_state == ’obstacle’
43: end if
44: else if curr_state == ’orientation’ then
45: object_found← check_prox_sen()
46: if object_found == ’obstacle’ then
47: curr_state = ’obstacle’
48: else
49: orient_robots()
50: if target_found then
51: curr_state = ’transport’
52: end if
53: end if
54: else if curr_state == ’preparetransport’ then
55: calculate_positions_for_recruited()
56: signal_confirmation← send_position_signal
57: if signal_confirmation == number_recruited_robots then
58: curr_state == ’waitingrobots’
59: end if
60: else if curr_state == ’reorientrobots’ then
61: wait_position_signal()
62: if send_position_signal then
63: send_confirmation_signal()
64: curr_state = ’orientation’
65: end if
66: else if curr_state == ’transport’ then
67: if curr_position_y <= end_position_y then
68: send_transported_signal()
69: curr_state = ’donetransport’
70: else
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Algorithm 3 MRDPSO algorithm (continued)

71: push_target()
72: end if
73: else if curr_state == ’orienttransport’ then
74: if transported_signal then
75: signal_number ← count_signals()
76: if signal_number == number_of_recruited_robots then
77: curr_state = ’donetransport’
78: send_target_transported_signal()
79: end if
80: end if
81: else if curr_state == ’donetransport’ then
82: if all_targets_transported then
83: stop_robots_movement()
84: stop_simulation()
85: else
86: curr_state = ’explore’
87: end if
88: end if
89: end while
90: end procedure
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