
PATH PLANNING OF MOBILE AGENTS USING AI
TECHNIQUE

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology
In

Mechanical Engineering

By

SOUMYA RANJAN SAHOO
&

SAYAN ROY

Department of Mechanical Engineering
National Institute of Technology

Rourkela
2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53186888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PATH PLANNING OF MOBILE AGENTS USING AI
TECHNIQUE

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Bachelor of Technology
In

Mechanical Engineering

By

SOUMYA RANJAN SAHOO
&

SAYAN ROY

Under the Guidance of

DR. D.R.K PARHI

Department of Mechanical Engineering
National Institute of Technology

Rourkela
2007

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “Path Planning of Mobile Agents Using AI

Techniques” submitted by Sri Soumya Ranjan Sahoo and Sri Sayan Roy in partial fulfillment

of the requirements for the award of Bachelor of Technology Degree in Mechanical

Engineering at the National Institute of Technology, Rourkela (Deemed University) is an

authentic work carried out by him under my supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been

submitted to any other University / Institute for the award of any Degree or Diploma.

Date: Dr. D.R.K Parhi

Dept. of Mechanical Engineering

National Institute of Technology

Rourkela - 769008

i

National Institute of Technology
Rourkela

ACKNOWLEDGEMENT

I would like to articulate my deep gratitude to my project guide Dr. D.R.K Parhi who

has always been my motivation for carrying out the project.

It is my pleasure to refer Microsoft word 2003 of which the compilation of this report

would have been impossible.

An assemblage of this nature could never have been attempted without reference to

and inspiration from the works of others whose details are mentioned in reference section. I

acknowledge my indebtedness to all of them.

Last but not the least to all of my friends who were patiently extended all sorts of help

for accomplishing this undertaking.

Date: Soumya Ranjan Sahoo

 Sayan Roy

Dept. of Mechanical Engineering

National Institute of Technology

Rourkela - 769008

ii

CONTENTS

Sl. No. Topic Page
1 Certificate i
2 Acknowledgement ii
3 Contents iii
4 Abstract iv
5 List of figures v
7 Chapter 1 : Introduction

 Objective
 Root and strategy
 Webots

1
1-3
4

8 Chapter 2 : Literature survey 5-20
9 Chapter 3 : WORK ANALYSIS

 My first bot
 Environment
 Robot
 A simple controller
 Summary

21
21-25
25-35
35-37
37

10 Chapter 4 :RESULTS AND DISCUSSION
 A simple controller
 Output
 Conclusion

39
40-42
42
43

11 Chapter 5 : Conclusion

44-45

12 Appendix : Program for simple controller
 Summary

46
47

13 Reference 48-51

iii

Abstract

 In this paper, we study coordinated motion in a swarm robotic system, called

a swarm-bot. A swarm-bot is a self-assembling and self-organizing. Artifact composed of a

swarm of s-bots, mobile robots with the ability to connect to and isconnect from each other.

The swarm-bot concept is particularly suited for tasks that require all-terrain navigation

abilities, such as space exploration or rescue in collapsed buildings. As a first step toward the

development of more complex control strategies, we investigate the case in which a swarm-

bot has to explore an arena while avoiding falling into holes.

 In such a scenario, individual s-bots have sensory–motor limitations that

prevent them navigating efficiently. These limitations can be overcome if the s-bots are made

to cooperate. In particular, we exploit the s-bots’ ability to physically connect to each other.

In order to synthesize the s-bots’ controller, we rely on artificial evolution, which we show to

be a powerful tool for the production of simple and effective solutions to the hole avoidance

task.

iv

 Chapter 1

 INTRODUCTION

 Objective

 Root and strategy

 INTRODUCTION

 We describe the s-bot , small autonomous robot with self assembly capabilities in

which a group of s-bots perform a variety of tasks which require self assembling ,physical

cooperation and coordination among the robots.

Objective:

 The main scientific objective of the project is the study of the novel ways of

designing self organizing and self –assembling artifacts, based on swarm robotics technique.

ROOTS and STRATEGY:

 Swarm robotics is an emergent field of collective robotics that studies robotics

system composed of swarm of robots tightly interacting and cooperating to reach their goal, it

finds its roots in recent studies in animal societies such as ants and bees.

 Social insects are a valuable source of inspiration for designing collectively

intelligent systems comprised of number of agents. Despite noise in the environment, errors

in the processing information and performing tasks and lack of global information, social

insects achieve their goals successfully. The design and realization of both the hardware and

the software of such a robotic system represents the scientific challenge of the SWARM-

BOTS project. In social insect colonies, even though individual members of the colony

dispose of limited cognitive and acting abilities, the swarm as a whole is able to collectively

solve complex problems such as nest building, defense, cleaning, brood care or foraging. The

complex collective behavior that emerges from simple interactions among individuals, and

between

 1

individuals and the environment is referred to as swarm intelligence. The swarm robotics

approach is characterized by the application of swarm intelligence techniques to the control

of groups of robots, emphasizing principles such as decentralization, local interactions among

agents, indirect communication and the use of local information.

In real ant colonies the problem of exploration and navigation is solved by establishing paths.

This is done in a very simple and distributed manner. Ants lay trails of pheromone, a

chemical substance that attracts other ants. Deneubourg et al. showed that the process of

laying a pheromone trail is a food strategy for finding the shortest path between a nest and a

food source, thereby establishing a path that others can follow.

 Swarm intelligence methods are for solving exploration and navigation tasks

performed by a swarm of robots in unknown environments. Our approach consists in using

chains of visually connected robots that collectively explore their environment. We adopt the

idea of robotic chains from Goss et al. [5], and realize our system stressing the swarm

intelligence approach. We conducted a series of experiments in simulation and put the

emphasis on evaluating the dynamics of the chain formation process. In particular, we

analyze several aspects of the quality of the chains, such as the shape of the formed chains or

the speed of the chain formation process, when varying robot group sizes and the values of

control parameters. The results show that our simple control system can be easily tuned to

obtain different behaviors at the group level.

 Inspired by this methodology of path establishment by pheromone laying, our

approach to exploration is to use a chain of robots, where the robots themselves act as trail

markers, or beacons, in place of pheromone trails. We define a robotic chain to be a sequence

of robots, where two neighboring robots can sense each other and the distance between them

never exceeds a certain maximum sensing range. In our case, the robots can visually sense

each other by means

 2

of an omni-directional camera. The range of this camera determines the maximum distance

between two neighboring robots. There are at least two advantages in using chains.

First, Robots can form a chain by following simple rules. Second, a robotic chain can

establish connections between different locations, enabling all other robots to get to one of

them by navigating along the chain. The distance between such locations can be bigger than

the perceptual range of one robot. Thus, the group of robots aggregated into a chain cans

collectively find solutions that overcome the limitations of a single robot.

Our work is carried out within the scope of the SWARM-BOTS project, 1 which aims at

developing a new robotic system, called a swarm-bot [3, 8]. A swarm-bot is defined as an

artifact composed of a swarm of s-bots, mobile robots with the ability to connect

to/disconnect from each other. Connections can be established if one s-bot grips another one,

and are advantageous for a variety of tasks such as stable navigation on rough terrain, passing

over a hole bigger than one s-bot, or retrieval of an object which is too big for a single s-bot.

As the real s-bots are not available for experimentation yet, we conducted all our experiments

in simulation. We use a sophisticated 3D simulation that takes into account the dynamics and

the collisions of rigid bodies. The behavior of the simulated s-bot has been compared with the

one of the two available real s-bot prototypes, revealing a close matching between them.

Therefore, we believe that the future validation of our work on the real s-bots will give good

results.

 One of the most critical aspects of this project is clearly the connection between the

robots, which is also the core of the innovation. The problem of interconnecting robot

modules has already been addressed by many researchers in the field of self-reconfigurable

robots, leading to many design solutions. For example the MTRAN and the Poly- Bot

modular robots display some of the most interesting results and use efficient connection

solutions.

 A peculiar feature of the Swarm-bot is that s-bots can exploit rich Connection

devices to self-assemble into various configurations, help each other, perform collective

transportation, and even communicate to each other. This feature, which is exploited

 3

by several social insects [1], provides an additional dimension to collective robotics where

interactions among robots are often virtual or take place through pushing actions.

WEBOTS:

 We did the simulation with help of Webots version 5.5.11 which a 3D mobile

robot simulator is allowing the users to simulate different types of mobile robots, including

wheeled robots, legged robots and flying robots.

Webots is professional mobile robot simulation software. It contains a rapid prototyping tool

allowing the user to create 3D virtual worlds with physics properties, such as mass

repartition, joints, friction coefficients, etc. The user can add simple inert objects or active

objects called mobile robots. Users can create complex virtual worlds and simulate their

robots within these environments. A complete programming library is provided to allow users

to program the robots (usually using the C, C++ or Java languages). From the controller

programs, it is possible to read sensor values and send motor commands to robots. Resulting

robot controllers can be transferred to real robots (Khepera robot with C controllers,

Hemisson robot with BotStudio controllers, Aibo, LEGO Mindstorms, etc.).

Webots is well suited for research and education projects related to mobile robotics. Many

mobile robotics projects have been relying on Webots for years in the following areas:

• Mobile robot prototyping (academic research, automotive industry, aeronautics,

vacuum cleaner industry, toy industry, lobbyism, etc.)

• Multi-agent research (swarm intelligence, collaborative mobile robots groups, etc.)

• Adaptive behavior research (Genetic evolution, neural networks, adaptive learning, AI,

etc.).

• Mobile robotics teaching (robotics lectures, C/C++/Java programming lectures,

robotics contest, etc.)

4

 Chapter 2

 Literature Survey

 Abstracts

 LITERATURE SURVEY

 Chain Formation in a Swarm of Robots
 Shervin Nouyan and Marco Dorigo
I IRIDIA, Universit¶e Libre de Bruxelles, Brussels, Belgium

 fvtrianni,etuci,mdorigog@ulb.ac.be

 March 2004

 Abstract

 In this paper, we present our first steps towards applying swarm intelligence methods for

solving exploration and navigation tasks performed by a swarm of robots in unknown

environments. Our approach consists in using chains of visually connected robots that

collectively explore their environment. We adopt the idea of robotic chains from Goss et al.

[5], and realize our system stressing the swarm intelligence approach.

 We conducted a series of experiments in simulation and put the emphasis on evaluating the

dynamic of the chain formation process. In particular, we analyze several aspects of the

quality of the chains, such as the shape of the formed chains or the speed of the chain

formation process, when varying robot group sizes and the values of control parameters. The

results show that our simple control system can be easily tuned to obtain different behaviors

at the group level.

Swarm robotics is an emerging ¯eld within collective robotics [9] and is largely inspired by

studies of social insect behaviour. In swarm robotics, large groups of simple robots are used

to collectively solve problems that exceed the capabilities of a single robot. In social insect

colonies, even though individual members of the colony dispose of limited cognitive and

acting abilities, the swarm as a whole is able to collectively solve complex problems such as

nest building, defense, cleaning, brood care or foraging. The complex collective behaviour

that emerges from simple interactions among individuals, and between individuals and the

environment is referred to as swarm intelligence [1].

 5

 The swarm robotics approach is characterized by the application of swarm intelligence

techniques to the control of groups of robots, emphasizing principles such as decentralization,

local interactions among agents, indirect communication and the use of local information. We

are in general interested in applying swarm intelligence methods to the solution of

exploration and navigation tasks performed by a group of robots in unknown environments.

Instead of using a complex controller that enables a robot to expore its environment by, for

instance, building an internal map-like representation [4, 7], we aim at developing simple

control strategies for an individual robot leading to efficient solutions in the swarm of robots.

6

Physical connections and cooperation in swarm robotics
 Francesco Mondada, Michael Bonani, St´ephane Magnenat, Andr´e Guignard,

Dario Floreano

Autonomous Systems Lab (http://asl.ep_.ch)

Swiss Federal Institute of Technology in Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

email: _rstname.lastname@ep_.ch (without accents)

 Abstract.
We describe a new multi-robot system, named SWARM-BOTS, that exploits physical inter-

connections to solve tasks that are impossible for a single robot. This is for instance the case

of passing large gaps or high steps in all-terrain conditions. In order to achieve this type of

autonomous collective operations, the design of the type of connection, as well as its sensors

and actuators, plays a key role.

 This paper presents the choices made in the SWARM-BOTS project and the know-how

collected until now. The requirements for autonomous operation and mobility of each robots

have led to the development of a connectivity very different those found in selfreconfigurable

robots. Some of the solutions employed for this problem are inspired upon physical

connectivity of social insects. We also illustrate with two experiments how sensors and

actuators allow autonomous operation in connection, release as well as passive and active

exploitation of inter-robot degrees of freedom (DOF).

The goal of the SWARM-BOTS1 project is to explore new hardware and software aspects of

swarm intelligence [2]. A swarm-bot is composed of several small mobile robots (with a

diameter of 10 cm), called s-bots, able to autonomously self-assemble into bigger entities,

called swarm-bots [7, 6]. A peculiar feature of the Swarm-bot is that s-bots can exploit rich

connection devices to self-assemble into various configurations, help each other, perform

collective transportation, and even communicate to each other.

7

 This feature, which is exploited by several social insects [1], provides an additional

dimension to collective robotics where interactions among robots are often virtual or take

place through pushing actions. One of the most critical aspects of this project is clearly the

connection between the robots, which is also the core of the innovation. The problem of

interconnecting robot modules has already been addressed by many researchers in the field of

self-reconfigurable robots, leading to many design solutions . For example the MTRAN and

the Poly- Bot modular robots display some of the most interesting results and use efficient

connection solutions. The MTRAN design [4] is based on permanent magnets for connection

and on shape memory alloy coils combined with non-linear springs for disconnection.

In the SWARM-BOTS project we have considered mechanical robustness in the context of

an autonomous connection. This has resulted in the choice of a system based on 2D shape

matching without penetration. This makes the connection less mechanically rigid, but

simplifies the connection procedure providing large tolerance to positioning and alignment.

This solution, which looks like a gripper, is also similar to the mechanisms used by animals

for this type of tasks, such as mandibles in ants or bees.

 8

Evolving Functional Self-Assembling in a Swarm of

autonomous Robots
Vito Trianni, Elio Tuci and Marco Dorigo

 Abstract

The goal of this study is the design of controllers for robots capable of physically connecting

to each other, any time environmental contingencies prevent a single robot to achieve its goal.

This phenomenon is referred to as functional self-assembling. Despite its relevance as an

adaptie response, functional self-assembling has been rarely investigated within the context

of collective robotics.

 Our task requires the robots to navigate within a rectangular corridor in

order to approach light bulbs positioned on the opposite end of the corridor with respect to

their starting positions. Aggregation and assembling are required in order to traverse a low

temperature area, within which assembled robots navigate more e_ectively than a group of

disconnected agents. The results of our empirical work demonstrate that controllers for a

group of homogeneous robots capable of functional self-assembling can be successfully

designed by using arti_cial neural networks shaped by evolutionary algorithms.

9

Cooperative Transport of Objects of Different Shapes and Sizes

Roderich Groß and Marco Dorigo
IRIDIA - Universit´e Libre de Bruxelles - Brussels, Belgium

{rgross,mdorigo}@ulb.ac.be

 Abstract
.

 This paper addresses the design of control policies for groups’ f up to 16 simple

autonomous mobile robots (called s-bots) for the cooperative transport of heavy objects of

different shapes and sizes. The -bots are capable of establishing physical connections with

each other end with the object (called prey).

 We want the s-bots to self-assemble Into structures which pull or push the prey

towards a target location the s-bots are controlled by neural networks that are shaped by

artificial evolution. The evolved controllers perform quite well, independently of he shape

and size of the prey, and allow the group to transport the prey towards a moving target.

Additionally, the controllers evolved for a relatively small group can be applied to larger

groups, making possible the transport heavier prey. Experiments are carried out using a

physics simulator, which provides a realistic simulation of real robots, which are currently

under construction.

 In the literature, several works can be found that consider the transport of an object

by a team of robots. Deneubourg et al. (1990) proposed the use of self-organized approaches

for the collection and transport of objects by robots in unpredictable environments. Each

robot unit could be simple and inefficient in itself, but a group of robots could exhibit

complex and efficient behaviors.Cooperation could be achieved without any direct

communication among robots (Grass´e, 1959; Deneubourg and Goss, 1989). Kube and Zhang

(1993a,b) studied a distributed approach to let a group of simple robots find and push a prey

towards a light.

 10

Kube and Bonabeau (2000), on a follow-up of Kube and Zhang’s research, evaluated the

sensitivity of their robotic system to the prey’s geometry by comparing the performance on

prey of different shapes. They report that when the prey was a small cuboid, “as the number

of robots increased the task took longer to complete as the robot interference was high since

the limited box side space created competition.

 In this paper, we aim at a robotic system that is appropriate for the

transport of prey of different shapes and sizes. We consider prey of cuboid as well as

cylindrical shape, with footprints that may differ in size by factors up to 6.25. In addition, the

prey can be of two different heights. The weight of the prey is independent of its geometry

and may vary up to a factor of 2.

11

Evolving Self-Organizing Behaviors for a Swarm-bot
Marco Dorigo, Vito Trianni, Erol S�ahin, Roderich Gro�,

Thomas H. Labella, Gianluca Baldassarre, Stefano Nol,

Jean-Louis Deneubourg, Francesco Mondada,

Dario Floreano, Luca M. Gambardella

Technical Report No.

TR/IRIDIA/2003-11
June 2004

IRIDIA - Universit_e Libre de Bruxelles, Belgium

_KOVAN - Department of Computer Engineering,

Middle East Technical University, Ankara, Turkey

xInstitute of Cognitive Sciences and Technologies - CNR, Roma, Italy

zCENOLI - Universit_e Libre de Bruxelles, Belgium

?ASL - Swiss Federal Institute of Technology, Lausanne, Switzerland

#IDSIA, Manno-Lugano, Switzerland

 Abstract
 In this paper, we introduce a self-assembling and self-organizing artifact,

called a swarm- bot, composed of a swarm of s-bots, mobile robots with the ability to connect

to and to disconnect from each other. We discuss the challenges involved in controlling a

swarm-bot and address the problem of synthesizing controllers for the swarm-bot using

artificial evolution. Specifically, we study aggregation and coordinated motion of the swarm-

bot using a physics-based simulation of the system. Experiments, using a simplified

simulation model of the s-bots, show that evolution can discover simple but effective

controllers for oth the aggregation and the coordinated motion of the swarm-bot.

12

 Analysis of the evolved controllers shows that they have properties of

scalability, that s, they continue to be elective for larger group sizes, and of generality, that s,

they produce similar behaviors for configurations deferent from those they ere originally

evolved for. The portability of the evolved controllers to real -bots is tested using a detailed

simulation model which has been validated against the real s-bots in a companion paper in

this same special issue. keywords: Swarm robotics, swarm intelligence, swarm-bot,

evolutionary robotics.

 In this paper, we focus on providing the s-bots with two basic abilities that are

of fundamental importance in many cooperative tasks: aggregation and coordinated

motion. Aggregation is of particular interest since it stands as a prerequisite for other forms of

cooperation. For instance, in order to assemble into a swarm-bot, s-bots should _rst be able to

aggregate.

 Therefore, the aggregation ability can be considered as the precondition for

other tasks that the swarm-bot is expected to be able to carry out. Coordinated motion

represents another basic ability for a swarm-bot formed by connected s-bots that, being

independent in their control, must coordinate their actions to choose a common direction of

motion. This coordination ability is essential for an effcient motion of the swarm-bot as a

whole. Aggregation and coordinated motion are the main focus of the experiments presented

in this paper,3 which is structured as follows.

 13

Group Transport of an Object to a Target that Only Some Group
Members May Sense
Roderich Groß and Marco Dorigo

IRIDIA - Universit´e Libre de Bruxelles - Brussels, Belgium

{rgross,mdorigo}@ulb.ac.be

Abstract

 This paper addresses the cooperative transport of a heavy object, called prey,

towards a sporadically changing target location by a group of robots. The study is focused on

the situation in which some robots are given the opportunity to localize the target, while the

others (called the blind ones) are not. We propose the use of relatively simple robots capable

of self-assembling into structures which pull or push the prey.

 To enable a blind robot to contribute to the group’s performance, it can locally

perceive traction forces, and whether it is moving or not. The robot group is controlled in a

distributed manner, using a modular control architecture. A collection of simple hand-coded

and artificially evolved control modules is presented and discussed. For group sizes ranging

from 2 to 16 and different proportions of blind robots within the group, it is shown that

controlled by an evolved solution, blind robots make an essential contribution to the group’s

performance.

The study is carried out using a physics-based simulation of a real robotic system that is

currently under construction.

14

 The field of distributed robotics has received growing attention by researchers

within the last 15 years. Multi-robot systems have been studied in various topic areas and in

different application domains [Parker, 2000]. Several works considered the cooperative

transport of objects by a group of mobile robots. Some of these have been inspired by studies

of social insect behavior. Deneubourg et al. [1990] proposed the use of self-organized

approaches for the collection and transport of objects by robots in unpredictable

environments. Each robot unit could be simple and inefficient in itself, but a group of robots

could exhibit complex and efficient behaviors. Cooperation could be achieved without any

direct communication among robots [Grass´e, 1959, Deneubourg and Goss, 1989].

 Indirect communication is prevalent in the robotic system realized by Aiyama et al.

[1999] in which two autonomous legged robots are carrying a common load in a pre-defined

direction. In their system, the robots were communicating via the object to be moved. In

order to synchronize its own actions with its teammate, each robot is provided with a sensor

to measure the force exerted by the common load on the robot itself. The use of force sensors

for the coordinated motion of a group of preassembled robots has been studied by Dorigo et

al. [2004]. In their system, the group was also able to move objects, if not too heavy, in an

arbitrary direction. Kube and Zhang [1993] studied a distributed approach to let a group of

simple robots find and push a box towards a light.

 The box was too heavy to be moved by a single robot. Inspired by the

observation that the behavior of ants during transport (e.g., changes in their spatial

arrangement) can be associated with the detection of the stagnation of movement, Kube and

Zhang [1995] extended their system with a stagnation recovery mechanism.

15

Hole Avoidance: Experiments in

Coordinated Motion on Rough Terrain _

Vito Triannix, Stefano Nol_y, and Marco Dorigox

xIRIDIA - Universit_e Libre de Bruxelles, Belgium

yInstitute of Cognitive Sciences and Technologies - CNR, Roma, Italy

Abstract

 In this paper, we study coordinated motion in a swarm robotic system, called

a swarm-bot. A swarm-bot is a self-assembling and self-organizing artifact, com- posed of a

swarm of s-bots, mobile robots with the ability to connect to and dis- connect from each

other. The swarm-bot concept is particularly suited for tasks that require abilities of

navigation on rough terrain, such as space exploration or rescue in collapsed buildings.

 In fact, a swarm-bot can exploit the cooperation of its simple components to

overcome difficulties or avoid hazardous situations. As a rst step toward the development of

more complex control strategies, we investigate the case in which a swarm-bot has to explore

an arena while avoiding to fall into holes. In order to synthesize the controller for the s-bots,

we rely

on artificial evolution, which proved to be a powerful tool for the production of simple and

effective solutions to the hole avoidance task.

 In this paper, we study an instance of the family of \navigation on rough

terrain" tasks, that is, hole avoidance. A swarm-bot has to perform coordinated motion in an

environment that presents holes too large to be traversed. Thus, holes must be recognized and

avoided, so that the swarm-bot does not fall into them. The difficulty in his task is twofold:

rst, s-bots should coordinate their motion. Second, s-bots have to recognize the presence of an

hole, communicate it to the whole group and re-organize to choose a safer direction of

motion.

16

Path Formation and Goal Search in Swarm Robotics
by

Shervin Nouyan

Universit´e Libre de Bruxelles, IRIDIA

Avenue Franklin Roosevelt 50, CP 194/6, 1050 Brussels, Belgium

SNouyan@ulb.ac.be

Supervised by

Marco Dorigo, Ph.D.

Maˆıtre de Recherches du FNRS

Universit´e Libre de Bruxelles, IRIDIA

Avenue Franklin Roosevelt 50, CP 194/6, 1050 Brussels, Belgium

mdorigo@ulb.ac.be August, 2004

A thesis submitted in partial fulfillment of the requirements of the

Universit´e Libre de Bruxelles, Facult´e de Sciences Appliqu´ees for the

DIPLOME D’ETUDES APPROFONDIES (DEA)

 Abstract

In this work, we present a swarm robotic approach to exploration and navigation. Taking

inspiration from swarm intelligence methods, we address the problem of solving complex

tasks with the group of robots while using simple control strategies for an individual robot. In

particular, our approach consists in visually connected robotic chains, where neighbouring

members of a chain can perceive each other with a camera. A chain of robots can be used to

establish a path between different locations, in this way allowing other robots to exploit the

chain to navigate along the formed path. We present the results of two series of experiments.

While in the first one we analyse the general capabilities of chain formation, in the second

one the robots have to find a goal location and establish a path towards it starting from a

home location. Three chain formation strategies are tested, differing in the degree of

movement allowed to the robots which are aggregated into a chain.

17

Physical connections and cooperation in swarm robotics
Francesco Mondada, Michael Bonani, St´ephane Magnenat, Andr´e Guignard, Dario

Floreano

Autonomous Systems Lab (http://asl.ep�.ch)

Swiss Federal Institute of Technology in Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

email: �rstname.lastname@ep�.ch (without accents)

Abstract

 We describe a new multi-robot system, named SWARM-BOTS, that

exploits physical inter-connections to solve tasks that are impossible for a single robot. This

is for instance the case of passing large gaps or high steps in all-terrain conditions. In order to

achieve this type of autonomous collective operations, the design of the type of connection,

as well as its sensors and actuators, plays a key role. This paper presents the choices made in

the SWARM-BOTS project and the know-how collected until now.

 The requirements for autonomous operation and mobility of each robots

have led to the development of a connectivity very different those found in selfrecon

�gurable robots. Some of the solutions employed for this problem are inspired upon physical

connectivity of social insects. We also illustrate with two experiments how sensors and

actuators allow autonomous operation in connection, release as well as passive and active

exploitation of inter-robot degrees of freedom (DOF).

18

Self-Organised Task Allocation in a Group of Robots

Thomas H. Labella, Marco Dorigo and

Jean-Louis Deneubourg

Technical Report No.

TR/IRIDIA/2004-6

November 30, 2004

Published in R. Alami, editor, Proceedings of the 7th International

Symposium on Distributed Autonomous Robotic Systems (DARS04),

Toulouse, France, June 23{25, 2004}

 Abstract

 Robot foraging, a frequently used test application for collective robotics,

consists in a group of robots retrieving a set of opportunely de ned objects to a target

location. A commonly observed experimental result is that the retrieving e ciency

of the group of robots, measured for example as the number of units retrieved by

a robot in a given time interval, tends to decrease with increasing group sizes. In

this paper we describe a biology inspired method for tuning the number of foraging

robots in order to improve the group efficiency.

 As a result of our experiments, in which robots use only locally available

information and do not communicate with each other, we observe self-organised task

allocation. This task allocation is e effective in exploiting mechanical di erences among the

robots inducing specialisation in the robots activities.

19

 We propose a method inspired by biology to tune the number of foragers. This method,

that exploits positive and negative feedbacks as typically done by self-organized systems

(Camazine et al., 2001), does not use any form of direct or symbolic communication and does

not require human intervention. Our work is part of the SWARM-BOTS project,2 whose aim

is to develop a new robotic system, a swarm-bot, composed of several independent and small

modules, called s-bots. Each module is autonomous and capable of connecting to other

modules to self-assemble into a swarm-bot. The control program of each s-bot exploits

techniques derived from swarm intelligence studies (Bonabe et al., 1999) and collaboration

among the s-bots is achieved by means of stigmergic communication (Grass�e, 1959; Dorigo

et al., 2000).

 20

 Chapter 3

 Work Analysis

 My first bot
 Environment
 Robot
 A simple controller
 Summary

 WORK ANALYSIS

My first world: mybot.wbt

As a first introduction, we are going to simulate a very simple robot made up of a cylinder,

two wheels and two infrared sensors. A program performing obstacle avoidance inspired

from Braitenberg’s algorithm controls the robot. It evolves in a simple environment

surrounded by a wall, which contains some obstacles to avoid.

 Fig.3.1

Environment

This very first simulated world is as simple as possible. It includes a floor, 4 obstacles and a

surrounding wall to avoid that the robot escapes. This wall is modeled using an Extrusion

node.

First, launch Webots and stop the current running simulation by pressing the Stop button. Go

to the File menu, new item to create a new world. This can also by achieved through the

New button, or the keyboard shortcut indicated in the File menu. Then open the scene tree

window from the Scene Tree... item in the Edit menu. This can also be achieved by

double-clicking in the 3D world. Let us start by changing the lighting of the scene:

1. Select the PointLight node, and click on the + just in front of it. You can now see

the different fields of the PointLight node. Select ambientIntensity and enter 0.6

as a value, then select intensity and enter 0.6, then select location and enter [0.75

0.5 0.5] as values. Press return.

21

2. Select the PointLight node, copy and paste it. Open this new PointLight node and

type [-0.5 0.5 0.35] in the location field.

3. Repeat this paste operation twice again with [0.45 0.5 -0.5] in the location field of

the third PointLight node, and [-0.5 0.5 -0.35] in the location field of the fourth

and last PointLight node.

4. The scene is now better lit. Open the Preferences... from the Edit menu, select the

Rendering tab and check the Display lights option. Click on the OK button to

leave the preferences and check that the light sources are now visible in the scene. Try

the different mouse buttons, including the mouse wheel if any, and drag the mouse in

the scene to navigate and observe the location of the light sources.

Secondly, let us create the wall:

1. Select the last Transform node in the scene tree window (which is the floor) and click

on the insert after button.

2. Choose a Solid node.

3. Open this newly created Solid node from the + sign and type "wall" in its name field.

4. Select the children field and Insert after a Shape node.

5. Open this Shape, select its apperance field and create an Appearance node from the

New node button. Use the same technique to create a Material node in the

material field of the Appearance node. Select the diffuseColor field of the

Material node and choose a color to define the color of the wall. Let us make it light

brown. In order to make your object change its color depending on its illumination,

select the specularColor field of the Material node and choose a color to define the

color of the illuminated wall. Let us use an even lighter brown to reflect the effect of

the light.

6. Similarly it also is possible to easily modify the colors of the ground. To do so you

will have to modify the two color fields of the last Transform node, the one

corresponding to the ground, which are located in the children / Shape / geometry /

Color node. In our examples we have changed it to a black and white grid.

7. Now create an Extrusion node in the geometry field of the Shape.

 22

8. Set the convex field to FALSE. Then, set the wall corner coordinates in the

crossSection field as shown in. You will have to re-enter the first point (0) at the

last position (10) to complete the last face of the extrusion.

9. In the spine field, write that the wall ranges between 0 and 0.1 along the Y axis

(instead of the 0 and 1 default values).

10. As we want to prevent our robot to pass through the walls like a ghost, we have to

define the boundingObject field of the wall. Bounding objects cannot use complex

geometry objects. They are limited to box, cylinder and spheres primitives. Hence, we

will have to create four boxes (representing the four walls) to define the bounding

object of the surrouding wall. Select the boundingObject field of the wall and create

a Group node that will contain the four walls. In this Group, insert a Transform node

as a children. Create a Shape as the unique children of the Transform. Create a

Material in the node Appearance and set both of its diffuseColor and

specularColor to white. This will be useful later, when the robot will have to detect

the obstacles because the detection of the sensors is based on these colors. Now create

a Box as a geometry for this Shape node. Set the size of the Box to [0.01 0.1 1], so

that it matches the size of a wall. Set the translation field of the Transform node to

[0.495 0.05 0], so that it matches the position of a wall.

11. Now, close this Transform, copy and paste it as the second children of the list.

Instead of creating a new Shape for this object, reuse the Shape you created for the

first bounding object. To do so, go back to the Transform node of the previous object,

open the children node, click on the Shape node and you will see on the right hand

side of the window that you can enter a DEF name. Write WALL_SHAPE as a DEF

name and return to the children of the second bounding object. First Delete the

Shape contained in it and create a New node inside it. However, in the Create a
new node dialog, you will now be able to use the WALL_SHAPE you just defined.

Select this item and click OK. Set the translation field of the new node to [-0.495

0.05 0], so that it matches the opposite wall. Repeat this operation with the two

remaining walls and set their rotation fields to [0 1 0 1.57] so that they match the

orientation of the corresponding walls. You also have to edit their translation field

as well, so that they match the position of the

 23

corresponding walls.

12. Close the tree editor, save your file as "my_mybot.wbt" and look at the result.

Fig.3.2

Thirdly, let us create the obstacles:

1. Select the last Solid node in the scene tree window (which is the wall) and click on

the insert after button.

2. Choose a Solid node.

3. Open this newly created Solid node from the + sign and type "green box" in its name

field.

 24

4. Using the same technic as for the wall add first a Shape, then an Appearance and a

Material. For the color, let us make it green with a lighter green for the illuminated

parts.

5. Now create a Box node in the geometry field of the Shape and set its size to [0.23

0.1 0.1]. Set the DEF name of this geometry to BOX0.

6. To create the boundingObject of this object, create a Shape node and reuse the

previous DEF for the geometry. As for the wall, create also an Appearance and a

Material node and set the two colors to white.

7. Finally set the translation field to [-0.05 0.05 -0.25] but let its rotation field to

the standard values.

8. Now repeat these steps to create the three remaining obstacles. First create the one

called "blue box" which has a geometry called BOX1 of [0.1 0.1 0.1], a

translation of [0.2 0.05 0.27] and a rotation of [0 1 0 0.31]. Then create the

one called "yellow box" which has a geometry called BOX2 of [0.05 0.1 0.3], a

translation of [-0.2 0.05 0.15] and a rotation of [0 1 0 0.4]. Finally create the

one called "red box" which has a geometry called BOX3 of [0.15 0.1 0.08], a

translation of [0.42 0.05 -0.1] and a standard rotation. For all these objects, set

their colors accordingly with their names.

Robot

This subsection describes how to model the MyBot robot as a DifferentialWheels node

containing several children: a Transform node for the body, two Solid nodes for the wheels,

two DistanceSensor nodes for the infra-red sensors and a Shape node with a texture. The

origin

 25

and the axis of the coordinate system of the robot and its dimensions are shown.

fig.3.3

To model the body of the robot:

1. Open the scene tree window.

2. Select the last Solid node.

3. Insert after a DifferentialWheels node, set its name to "mybot".

4. In the children field, first introduce a Transform node that will contain a shape with

a cylinder. In the new children field, Insert after a Shape node. Choose a color, as

described previously. In the geometry field, insert a Cylinder node. Set the height

field of the cylinder to 0.08 and the radius one to 0.045. Set the DEF name of the

geometry to BODY, so that we will be able to reuse it later. Now set the
translation

 26

fig.3.4

To model the left wheel of the robot:

1. Select the Transform node corresponding to the body of the robot and Insert after a

Solid node in order to model the left wheel. Type "left wheel" in the name field, so

that this Solid node is recognized as the left wheel of the robot and will rotate

according to the motor command.

27

2. The axis of rotation of the wheel is x. The wheel will be made of a Cylinder rotated

of pi/2 radians around the z axis. To obtain proper movement of the wheel, you must

pay attention not to confuse these two rotations. Consequently, you must add a

Transform node to the children of the Solid node.

3. After adding this Transform node, introduce inside it a Shape with a Cylinder in its

geometry field. Don't forget to set an appearance as explained previously. The

dimensions of the cylinder should be 0.01 for the height and 0.025 for the radius.

Set the rotation to [0 0 1 1.57]. Pay attention to the sign of the rotation; if it is

wrong, the wheel will turn in the wrong direction.

4. In the Solid node, set the translation to [-0.045 0.025 0] to position the left wheel,

and set the rotation of the wheel around the x axis: [1 0 0 0].

5. Give a DEF name to your Transform: WHEEL; notice that you positioned the wheel

in translation at the level of the Solid node, so that you can reuse the WHEEL

Transform for the right wheel.

6. Close the tree window, look at the world and save it. Use the navigation buttons to

change the point of view.

To model the right wheel of the robot:

28

1. Select the left wheel Solid node and insert after another Solid node. Type "right

wheel" in the name field. Set the translation to [0.045 0.025 0] and the rotation to [1 0

0 0].

2. In the children, Insert after USE WHEEL. Press Return, close the tree window and

save the file. You can examine your robot in the world editor, move it and zoom on it.

 The robot and its two wheels are shown .

fig.3.5

29

The two infra-red sensors are defined as two cylinders on the front of the robot body. Their

diameter is 0.016 m and their height is 0.004 m. You must position these sensors properly so

that the sensor rays point in the right direction, toward the front of the robot.

1. In the children of the DifferentialWheels node, insert after a DistanceSensor

node.

2. Type the name "ir0". It will be used by the controller program.

3. Let us attach a cylinder shape to this sensor: In the children list of the

DistanceSensor node, Insert after a Transform node. Give a DEF name to it:

INFRARED, which you will use for the second IR sensor.

4. In the children of the Transform node, insert after a Shape node. Define an

appearance and insert a Cylinder in the geometry field. Type 0.004 for the height

and 0.008 for the radius.

5. Set the rotation for the Transform node to [0 0 1 1.57] to adjust the orientation of the

cylinder.

6. In the DistanceSensor node, set the translation to position the sensor and its ray: [-

0.02 0.063 -0.042]. In the File menu, Preferences, Rendering, check the Display
sensor rays box. In order to have the ray directed toward the front of the robot, you

must set the rotation to [0 1 0 2.07].

7. In the DistanceSensor node, you must introduce some values of distance

measurements of the sensors to the lookupTable field, according to. These values are:

Lookup Table [0 1024 0,

 0.05 1024 0,

 0.15 0 0]

30

Distance measurements of the MyBot sensors. (fig.3.6)

8. To model the second IR sensor, select the DistanceSensor node and Insert after a

new DistanceSensor node. Type "ir1" as a name. Set its translation to [0.02 0.063 -

0.042] and its rotation to [0 1 0 1.07]. In the children, insert after USE INFRARED.

In the lookupTable field, type the same values as shown above.

9. In order to detect better the obstacles, we will use two rays per DistanceSensor. To

do so, open both DistanceSensor nodes and set for each one the value of the

numberOfRay field to 2 and set also the aperture field to 1.

The robot and its two sensors are shown.

31

 The DistanceSensor nodes of the MyBot robot (fig.3.7)

To paste a texture on the face of the robot:

1. Select the last DistanceSensor node and Insert after a Shape node.

2. Create an Appearance node in the appearance field. Create an ImageTexture node

in the texture field of this node, with the following URL:

3. "Mybot/mybot.png". This refers to an image file lying in the world’s directory.

4. In the geometry field, create an IndexedFaceSet node, with a Coordinate node in

the coord field. Type the coordinates of the points in the point field:

 32

 [0.015 0.038 -0.041,

 0.015 0.023 -0.041,

 0 0.023 -0.0455,

 -0.015 0.023 -0.041,

 -0.015 0.038 -0.041,

 0 0.038 -0.0455]

and Insert after in the coordIndex field the following values: 0, 1, 2, 5, -1, 5, 2, 3, 4, -1 The

-1 values is there to mark the end of a face. It is useful when defining several faces for the

same IndexedFaceSet node.

5. In the texCoord field, create a TexureCoordinate node. In the point field, enter the

coordinates of the texture:

 [0 0

 0.5 0

 1 0

 1 1

 0.5 1

 0 1]

6. and in the texCoordIndex field, type: 5, 0, 1, 4, -1, 4, 1, 2, 3, -1.

7. In our example, we have also modified the value of the creaseAngle of the

IndexedFaceSet. This field modifies the way the transition of illumination between

the different faces of the IndexedFaceSet are done. In our example, we have set its

value to

33

0.9 so that the illumination transition is smooth between the two faces.

8. The texture values are shown.

fig.3.8 Defining the texture of the MyBot robot

To finish with the DifferentialWheels node, you must fill in a few more fields:

1. In the controller field, select "mybot_simple" which should appear in the popup

controller list when you press the file selection button. It is used to determine which

controller program controls the robot.

2. The boundingObject field can contain a Transform node with a Cylinder, as a

cylinder as bounding object for collision detection is sufficient to bound the MyBot

robot. Create a Transform node in the boundingObject field, with the translation

set to [0 0.0415 0] and for the Cylinder node in its children simply reuse the

BODY node defined

34

previously.

3. In the axleLength field, enter the length of the axle between the two wheels: 0.09

4. In the wheelRadius field, enter the radius of the wheels: 0.025.

5. Values for other fields and the finished robot in its world are shown.

fig.3.9 The other fields of the DifferentialWheels node

 A simple controller

This controller is very simple. The controller program simply reads the sensor values and sets

the two motors' speeds, in such a way that MyBot avoids the obstacles.

Below is the source code for the mybot_simple.c controller:

35

#include <device/robot.h>

#include <device/differential_wheels.h>

#include <device/distance_sensor.h>

#define SPEED 60

#define TIME_STEP 64

static void reset(void);

static int run(int);

static DeviceTag ir0, ir1;

static void reset(void)

{

 ir0 = robot_get_device("ir0");

 ir1 = robot_get_device("ir1");

 distance_sensor_enable(ir0, TIME_STEP);

 distance_sensor_enable(ir1, TIME_STEP);

 return;

}

static int run(int ms)

{

 short left_speed, right_speed;

 unsigned short ir0_value, ir1_value;

 ir0_value = distance_sensor_get_value(ir0);

 ir1_value = distance_sensor_get_value(ir1);

 if (ir1_value > 500) {

 if (ir0_value > 500) {

 left_speed = -SPEED;

 right_speed = -SPEED / 2;

 } else {

 left_speed = -ir1_value / 10;

 right_speed = (ir0_value / 10) + 5;

36

 } else if (ir0_value > 500) {

 left_speed = (ir1_value / 10) + 5;

 right_speed = -ir0_value / 10;

 } else {

 left_speed = SPEED;

 right_speed = SPEED;

 }

 differential_wheels_set_speed(left_speed, right_speed);

 return TIME_STEP;

}

int main()

{

 robot_live(reset);

 robot_run(run);

 return 0;

}

 SUMMARY:

This program is made up of two functions as in any C program,main() and reset() which is a

call back function used for getting references to the sensors of the robot.This function will be

called each time to reread the references to the device called DeviceTags.ex:ir0,ir1.Initially

they have to be assigned.

The updates for the device happen in 64 milliseconds.

Finally the main() function enters an endless loop in which the sensor values are read,motor

speeds are computed according to sensor values and assigned to the motors and encoders are

37

read and reset if needed

Robot_run(run):This function runs the simulation repeatedly after the number of milliseconds

that is passed as argument.

38

 Chapter 4

 Result and Discussion

 A simple controller
 Output
 Conclusion

 Result and Discussion

fig.4.1

This figure shows the world in which the bot is needed to operate. Here we see the floor is

illuminated with four lights .and the floor is bounded by four walls so that on simulation the

bot doesn’t fall out of the arena.

 fig.4.2 39

Here we finally have the mini bot in its ability to navigate through the environment designed

for the bot(differential wheels). we can clearly see the obstacle which is attached to the wall.

this is all meant for the bot to be assessed about its capability to avoid obstacle

fig.4.3

Here we design the sensors for the bot so that it can detect any obstacle in its proximity and

thereby can evade them to avoid collision. If the right sensor detects the obstacle to be very

close then the bot takes a left turn and vice versa:-right turn

A simple controller

This controller is very simple. The controller program simply reads the sensor values and sets

the two motors' speeds, in such a way that MyBot avoids the obstacles.

Below is the source code for the mybot_simple.c controller:

40

#include <device/robot.h>

#include <device/differential_wheels.h>

#include <device/distance_sensor.h>

#define SPEED 60

#define TIME_STEP 64

static void reset(void);

static int run(int);

static DeviceTag ir0, ir1;

static void reset(void)

{

 ir0 = robot_get_device("ir0");

 ir1 = robot_get_device("ir1");

 distance_sensor_enable(ir0, TIME_STEP);

 distance_sensor_enable(ir1, TIME_STEP);

 return;

}

static int run(int ms)

{

 short left_speed, right_speed;

 unsigned short ir0_value, ir1_value;

 ir0_value = distance_sensor_get_value(ir0);

 ir1_value = distance_sensor_get_value(ir1);

 if (ir1_value > 500) {

 if (ir0_value > 500) {

 left_speed = -SPEED;

 right_speed = -SPEED / 2;

 } else {

 left_speed = -ir1_value / 10;

41

right_speed = (ir0_value / 10) + 5;

 }

 } else if (ir0_value > 500) {

 left_speed = (ir1_value / 10) + 5;

 right_speed = -ir0_value / 10;

 } else {

 left_speed = SPEED;

 right_speed = SPEED;

 }

 differential_wheels_set_speed(left_speed, right_speed);

 return TIME_STEP;

}

int main()

{

 robot_live(reset);

 robot_run(run);

 return 0;

}

OUTPUT

Fig.4.4

The output is a complete bot which can easily avoid obstacle and can navigate through the

environvent with its all translational and rotational capabilities

42

Conclusion: This program is made up of two functions as in any C program,main() and

reset() which is a call back function used for getting references to the sensors of the

robot.This function will be called each time to reread the references to the device called

DeviceTags.ex:ir0,ir1.Initially they have to be assigned.

The updates for the device happen in 64 milliseconds.

Finally the main() function enters an endless loop in which the sensor values are read,motor

speeds are computed according to sensor values and assigned to the motors and encoders are

read and reset if needed.

Robot_run(run):This function runs the simulation repeatedly after the number of milliseconds

that is passed as argument.

43

 Chapter 5

 Conclusion

 Conclusion

 The swarm intelligence is widely used in space explorations, rescue in

collapsed buildings, shop floor cleaning, shop floor industries, process industries and many

others.

 The hole-avoidance task represents the first step toward the solution of

more difficult problems. We will extend this work in order to obtain controllers that can pass

over holes that are sufficiently small, while avoiding falling into holes that are too big to be

traversed by the swarm-bot.additionally; we plan to study problems that belong to the all-

terrain navigation family, such as coping with uneven terrains. In these perspectives, physical

connections among s-bots become an essential feature to be exploited. Finally, we intend to

investigate functional self-assembly for all terrain navigation, that is, the problem of forming

and disbanding a swarm-bot with a functional shape for the particular environmental

conditions and task to be performed, in order to maximize the efficiency in the navigation

 Results demonstrate the traction sensor to be a powerful mechanism for

achieving coordination in the swarm-bot. The traction sensor allows the swarm-bot to exploit

the complex dynamics arising from interactions between individual s-bots and between the s-

bots and the environment. It provides robustness and adaptively features with respect to

environmental or structural changes of the swarm-bot. Besides, traction forces are used as a

sort of communication of the presence of a hazard, allowing the group as a whole and not

only the s-bots that perceive the hole to change direction of motion when heading toward a

hole. Finally, the traction sensor can work also as a distributed bumper for the swarm-bot,

allowing collective obstacle avoidance

44

 The solutions found by evolution are simple and in many cases they work

in different environmental situations. The obtained results suggest that evolution is a suitable

tool for synthesizing controllers for a group of homogeneous robots. In this case, evolution

was able to produce a self-organizing system that relies on simple and general rules, a system

that is consequently robust to environmental changes and to the number of s-bots involved in

the experiment.

45

 Chapter 6

 Appendix

 Program

 Summary

 APPENDIX
Program for simple controller
#include <device/robot.h>
#include <device/differential_wheels.h>
#include <device/distance_sensor.h>

#define SPEED 60
#define TIME_STEP 64

static void reset(void);
static int run(int);

static DeviceTag ir0, ir1;

static void reset(void)
{
 ir0 = robot_get_device("ir0");
 ir1 = robot_get_device("ir1");

 distance_sensor_enable(ir0, TIME_STEP);
 distance_sensor_enable(ir1, TIME_STEP);

 return;
}

static int run(int ms)
{
 short left_speed, right_speed;
 unsigned short ir0_value, ir1_value;

 ir0_value = distance_sensor_get_value(ir0);
 ir1_value = distance_sensor_get_value(ir1);

 if (ir1_value > 500) {
 if (ir0_value > 500) {
 left_speed = -SPEED;
 right_speed = -SPEED / 2;
 } else {
 left_speed = -ir1_value / 10;
 right_speed = (ir0_value / 10) + 5;
 }
 } else if (ir0_value > 500) {
 left_speed = (ir1_value / 10) + 5;
 right_speed = -ir0_value / 10;
 } else {
 left_speed = SPEED;
 right_speed = SPEED;
 }

 differential_wheels_set_speed(left_speed, right_speed);

 return TIME_STEP;

46

}

int main()
{
 robot_live(reset);
 robot_run(run);

 return 0;
}

SUMMARY:

This program is made up of two functions as in any C program,main() and reset() which is a
call back function used for getting references to the sensors of the robot.This function will be
called each time to reread the references to the device called DeviceTags.ex:ir0,ir1.Initially
they have to be assigned.

 The updates for the device happen in 64 milliseconds.

Finally the main() function enters an endless loop in which the sensor values are read,motor
speeds are computed according to sensor values and assigned to the motors and encoders are
read and reset if needed.

Robot_run(run):This function runs the simulation repeatedly after the number of milliseconds
that is passed as argument.

47

 Chapter 7

 References

 References

[1] G. Baldassarre, S. Nil , and D. Parisi. Evolution of collective behavior in a team of

physically linked robots. In R. Gunther, A. Guillot, and J.-A. Meyer, editors, Applications of

Evolutionary Computing - Proceedings of the Second European Workshop on evolutionary

Robotics (EvoWorkshops2003: EvoROB), pages 581{592. Springer-Verlag, Berlin,

Germany, 2003. [2] S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and

E. Bonabeau. Self-Organization in Biological Systems. Princeton University Press, Princeton,

NJ, 2001. [3] A. Castano, W. S en, and P. Will. CONRO: Towards deployable robots with

inter-robot metamorp ic capabilities. Autonomous Robots, 8:309{324, 2000. [4] M. Dorigo,

V. Trianni, E. S�ahin, R. Gro�, T. H. Labella, G. Baldassarre, S. Nol , J.-L. Deneubourg, F.

Mondada, D. Floreano, and L. M. Gambardella. Evolving self-organizing behaviors for a

swarm-bot. Autonomous Robots, 17(2{ 3):223{245, 2004.

[5] S. Hirose, . Shirasu, and E. F. Fukushima. Proposal for cooperative robot \Gunryu"

composed of autonomous segments. Robotics and Autonomous Systems,

17:107{118, 1996. [6] A. Lioni, C. Sauwens, G. Theraulaz, and J.-L. Deneubourg. Chain

formation in -cophilla longinoda. Journal of Insect Behaviour, 15:679{696, 2001. [7] L.

Matthies, E. Gat, R. Harrison, B. Wilcox, R. Volpe, and T. Litwin. Mars microrover

navigation: Performance evaluation and enhancement. Autonomous Robots, 2(4):291{312,

1995. [8] F. Mondada, G. C. Pettinaro, A. Guignard, I. V. Kwee, D. Floreano, J.-L.

Deneubourg, S. Nol , L. M. Gambardella, and M. Dorigo. SWARM-BOT: A new distributed

robotic concept. Autonomous Robots, 17(2{3):193{221, 2004. [9] S. Nol and D. Floreano.

Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing

Machines. MIT Press/Bradford Books, Cambridge, MA, 2000.

[10] M. Quinn, L. Smith, G. Mayley, and P. Husband. Evolving teamwork and role allocation

with real robots. In R. K. Standish, M. A. Bedau, and H. A. Abbass, editors, Proceedings of

the 8th International Conference on Arti cial Life, pages 302{311. MIT Press, Cambridge,

MA, 2002. [11] K. St�y, W.-M. Shen, and P. Will. Global locomotion from local interaction

in self-recon

 48

gurable robots. In W. M. Shen, C. Torras, and H. Yuasa, editors, Proc. of the 7th International

Conference on Intelligent Autonomous Systems (IAS-7), pages 09{316. IOS Press,

Amsterdam, The Netherlands, Mar 25-27

2002.

1. G. Baldassarre, S. Nol , and D. Parisi. Evolution of collective behaviour in a team of

physically linked robots. In R. G�unther, A. Guillot, and J.-A. Meyer, editors, Proceedings

of the Second European Workshop on Evolutionary Robotics (EvoWorkshops2003:

EvoROB), Lecture Notes in Computer Science, pages 581{ 592. Springer Verlag, Berlin,

Germany, 2003.

2. G. Baldassarre, S. Nol , and D. Parisi. Evolving mobile robots able to display collective

behaviour. Arti cial Life, 9:255{267, 2003.

3. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Articial

Systems. Oxford University Press, New York, NY, 1999.4. A. Castano, W.-M. Shn, and P.

Will. CONRO: Towards deployable robots with inter-robot metamorphic capabilities.

Autonomous Robots, 8:309{324, July 2000.

5. M. Dorigo and E. S�ahin. Swarm robotics { special issue editorial. Autonomous robots,

17(2{3):111{113, 2004.

6. M. Dorigo, V. Trianni, E. S�ahin, R. Gro�, T. H. Labella, G. Baldassarre, S. Nol, J.-L.

Deneubourg, F. Mondada, D. Floreano, and L. M. Gambardella. Evolving self-organizing

behaviors for a swarm-bot. Autonomous Robots, 17(2{3):223{245, 2004.

7. R. Gro� and M. Dorigo. Cooperative transport of objects of di

erent shapes andsizes. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada,

andT. St�utzle, editors, Proceedings of ANTS 2004 { Fourth International Workshopon Ant

Colony Optimization and Swarm Intelligence, volume 3172 of Lecture Notesin Computer

Science, pages 107{118. Springer Verlag, Berlin, Germany, 2004.

8. R. Gro� and M. Dorigo. Evolving a cooperative transport behavior for two simple robots.

In P. Liardet, P. Collet, C. Fonlupt, E. Lutton, and M. Schoenauer, editors, Arti cial Evolution

{ 6th International Conference, Evolution Arti cielle, EA

49

2003, Marseille, France, October 2003, volume 2936 of Lecture Notes in Computer Science,

pages 305{317. Springer Verlag, Berlin, Germany, 2004.

9. R. Gro� and M. Dorigo. Group transport of an object to a target that only some group

members may sense. Technical Report TR/IRIDIA/2004-4, Universit�e Libre de Bruxelles,

Belgium, 2004. To appear in the Eight International Conference on Parallel Problem Solving

from Nature (PPSN VIII), September 18-22, 2004,

Birmingham, UK.

10. P. Khosla, B. Brown, C. Paredis, B. Grabowski, L. Navarro, C. Bererton, and M.

Vandeweghe. Millibot Report. Report on millibot project, DARPA contract DABT63-97-1-

0003, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, April 2002.

11. T.H. Labella, M. Dorigo, and J.-L. Deneubourg. E ciency and task allocation in prey

retrieval. In A.J. Ijspeert, M. Murata, and N. Wakamiya, editors, Proceedings of the First

International Workshop on Biologically Inspired Approaches to Advanced Information

Technology (Bio-ADIT2004), Lecture Notes in Computer Science, pages 32{47. Springer

Verlag, Heidelberg, Germany, 2004.

12. T.H. Labella, M. Dorigo, and J.-L. Deneubourg. Self-organised task allocation in a swarm

of robots. Technical Report TR/IRIDIA/2004-6, Universit�e Libre de Bruxelles, Belgium,

2004. To appear in the 7th International Symposium on Distributed Autonomous Robotic

Systems (DARS04), June 23-25, 2004, Toulouse, France.

13. F. Mondada, G. C. Pettinaro, A. Guignard, I. V. Kwee, D. Floreano, J.-L. Deneubourg, S.

Nol , L. M. Gambardella, and M. Dorigo. SWARM-BOT: A new distributed robotic concept.

Autonomous Robots, 17(2{3):193{221, 2004.

14. F. Mondada, G. C. Pettinaro, I. W. Kwee, A. Guignard, L. M. Gambardella, . Floreano, S.

Nol , J.-L. Deneubourg, and M. Dorigo. SWARM-BOT: A swarm f autonomous mobile

robots with self-assembling capabilities. In C.K. Hemelrijk nd E. Bonabeau, editors,

Proceedings of the International Workshop on Selforganisation nd Evolution of Social

Behaviour, pages 307{312, Monte Verit�a, Ascona, witzerland, September 8{13, 2002. 15.

E. S�ahin, T. H. Labella, V. Trianni, J.-L. Deneubourg, P. Rasse, D. Floreano, L. M.

Gambardella, F. Mondada, S. Nol , and M. Dorigo. SWARM-BOT:

50

Pattern

formation in a swarm of self-assembling mobile robots. In Proceedings of the EEE

International Conference on Systems, Man and Cybernetics. IEEE Press, iscataway, NJ,

October 2002.

16. V. Trianni, R. Gro�, T. H. Labella, E. S�ahin, and M. Dorigo. Evolving aggregation

behaviors in a swarm of robots. In W. Banzhaf, T. Christaller, P. Dittrich, J. T.

Kim, and J. Ziegler, editors, Proceedings of the Seventh European Conference on

Arti cial Life, volume 2801 of Lecture Notes in Arti cial Intelligence, pages 865{

874. Springer Verlag, Berlin, Germany, 2003.

17. V. Trianni, S. Nol , and M. Dorigo. Hole avoidance: Experiments in coordinated

motion on rough terrain. In F. Groen, N. Amato, A. Bonarini, E. Yoshida, and

B. Kr�ose, editors, Intelligent Autonomous Systems 8, pages 29{36. IOS Press,

Amsterdam,The Netherlands, 2004.

18. V. Trianni, E. Tuci, and M. Dorigo. Evolving functional self-assembling in a swarm

of autonomous robots. In S. Schaal, A. Ijspeert, A. Billard, S. Vijayakamur, J. Hallam,

and J-A. Meyer, editors, From Animals to Animats 8. Proceedings of the Eight International

Conference on Simulation of Adaptive Behavior (SAB04), pages 405{

414. MIT Press, Cambridge, MA, 2004.

 51

