78 research outputs found

    Fault-Tolerant Control Strategy for Steering Failures in Wheeled Planetary Rovers

    Get PDF
    Fault-tolerant control design of wheeled planetary rovers is described. This paper covers all steps of the design process, from modeling/simulation to experimentation. A simplified contact model is used with a multibody simulation model and tuned to fit the experimental data. The nominal mode controller is designed to be stable and has its parameters optimized to improve tracking performance and cope with physical boundaries and actuator saturations. This controller was implemented in the real rover and validated experimentally. An impact analysis defines the repertory of faults to be handled. Failures in steering joints are chosen as fault modes; they combined six fault modes and a total of 63 possible configurations of these faults. The fault-tolerant controller is designed as a two-step procedure to provide alternative steering and reuse the nominal controller in a way that resembles a crab-like driving mode. Three fault modes are injected (one, two, and three failed steering joints) in the real rover to evaluate the response of the nonreconfigured and reconfigured control systems in face of these faults. The experimental results justify our proposed fault-tolerant controller very satisfactorily. Additional concluding comments and an outlook summarize the lessons learned during the whole design process and foresee the next steps of the research

    Rough-terrain mobile robot planning and control with application to planetary exploration

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.Includes bibliographical references (leaves 119-130).Future planetary exploration missions will require mobile robots to perform difficult tasks in highly challenging terrain, with limited human supervision. Current motion planning and control algorithms are not well suited to rough-terrain mobility, since they generally do not consider the physical characteristics of the rover and its environment. Failure to understand these characteristics could lead to rover entrapment and mission failure. In this thesis, methods are presented for improved rough-terrain mobile robot mobility, which exploit fundamental physical models of the rover and terrain. Wheel-terrain interaction has been shown to be critical to rough terrain mobility. A wheel-terrain interaction model is presented, and a method for on-line estimation of important model parameters is proposed. The local terrain profile also strongly influences robot mobility. A method for on-line estimation of wheel-terrain contact angles is presented. Simulation and experimental results show that wheel-terrain model parameters and contact angles can be estimated on-line with good accuracy. Two rough-terrain planning algorithms are introduced. First, a motion planning algorithm is presented that is computationally efficient and considers uncertainty in rover sensing and localization. Next, an algorithm for geometrically reconfiguring the rover kinematic structure to optimize tipover stability margin is presented. Both methods utilize models developed earlier in the thesis.(cont.) Simulation and experimental results on the Jet Propulsion Laboratory Sample Return Rover show that the algorithms allow highly stable, semi-autonomous mobility in rough terrain. Finally, a rough-terrain control algorithm is presented that exploits the actuator redundancy found in multi-wheeled mobile robots to improve ground traction and reduce power consumption. The algorithm uses models developed earlier in the thesis. Simulation and experimental results show that the algorithm leads to improved wheel thrust and thus increased mobility in rough terrain.by Karl David Iagnemma.Ph.D

    Predicting planetary rover mobility in reduced gravity using 1-g experiments

    Get PDF
    Traversing granular regolith, especially in reduced gravity environments, remains a potential challenge for wheeled rovers. Mitigating hazards for planetary rovers requires testing in representative environments, but direct Earth-based testing fails to account for the effect of reduced gravity on the soil itself. Here, experimental apparatus and techniques for reduced-gravity flight testing are used to systematically evaluate three existing Earth-based testing methods and develop guidelines for their use and interpretation: (i) reduced-weight testing, (ii) matching soil testing instrument response through soil simulant design, and (iii) granular scaling laws (GSL). Experimentation campaigns flying reduced-gravity parabolas, with soil and wheel both in lunar-g, have shown reductions in net traction of 20% or more and increases in sinkage of up to 40% compared to Earth-based testing methods (i) and (ii). Scaled-wheel testing, according to GSL (method iii) has shown better agreement with reduced-g tests (less than 10% error) and also tends to err on the side of conservative predictions. Limitations of GSL are investigated including a recently proposed cohesion constraint (that the wheel radius ratio must be the inverse of the gravity ratio) and the effects of wheel size and aspect ratio on GSL’s accuracy. It was found that the cohesion constraint can most likely be ignored for mildly cohesive soils such as lunar regolith. Limits on wheel sizes and aspect ratio variation are also proposed. The application of GSL to planetary rover testing is demonstrated through two studies undertaken in collaboration with NASA’s Jet Propulsion Laboratory. One study compares wheel designs for a skid-steer lunar rover in single-wheel tests scaled by GSL, demonstrating that diagonal grousers improve turning performance without requiring larger wheels. The second study involves application of GSL to the design of two reconfigurable test platforms for evaluating steep-terrain mobility performance. Another aspect of rover mobility testing—normal force control in single-wheel testbeds—is also investigated. An improved method for single-wheel testing, using a 4-bar mechanism, essentially eliminates normal force oscillations from frictional vertical sliders. Finally, guidelines for conducting and interpreting 1-g mobility tests for lunar rovers are presented, and potential avenues for future research are outlined

    DESIGN AND ANALYSIS OF ROVER WHEEL TESTBED

    Get PDF
    Wheel performance has been one of the limiting factors in interplanetary rover mis-sions. Because the rigors of space restrict use of conventional tire materials, roverwheels suffer from lack of traction, high risk of snagging, and little or no compliance,which limits the rover's ability to explore and traverse discontinuous terrain. Whatis worse is that these limitations go unresolved by the current lack of testing. Theconcept that wheel utilization and design are enhanced by testing is not new. TheApollo program enjoyed substantial testing of the Lunar Rover Vehicle's wheel butat a tremendous cost in time and money, which is probably the reason for its currentlow priority. Single wheel testing is a solution to this problem because it can cheaplyprovide data for a full rover assembly's performance. This paper details these prob-lems and provides solutions to several road blocks of using single wheel testing asa substitute for full rover testing. The Suspension and Wheel Experimentation andEvaluation Testbed (S.W.E.E.T), which is specifically designed to test single wheelsin situations previously neglected, will enable engineers to iteratively improve wheeldesign and to develop more accurate and encompassing mission contingency strategieswithout the cost and time of full rover testing

    ORYX 2.0: A Planetary Exploration Mobility Platform

    Get PDF
    This project involved the design, manufacturing, integration, and testing of ORYX 2.0, a modular mobility platform. ORYX 2.0 is a rover designed for operation on rough terrain to facilitate space related technology research and Earth exploration missions. Currently there are no low-cost rovers available to academia or industry, making it difficult to conduct research related to surface exploration. ORYX 2.0 fills this gap by serving as a ruggedized highly mobile research platform with many features aimed at simplifying payload integration. Multiple teleoperated field testing trials on a variety of terrains validated the rover’s ruggedness and ability to operate soundly. Lastly, a deployable pan-tilt camera was designed, built, and tested, as an example payload

    ORYX 2.0: A Planetary Exploration Mobility Platform

    Get PDF
    This project involved the design, manufacturing, integration, and testing of ORYX 2.0, a modular mobility platform. ORYX 2.0 is a rover designed for operation on rough terrain to facilitate space related technology research and Earth exploration missions. Currently there are no low-cost rovers available to academia or industry, making it difficult to conduct research related to surface exploration. ORYX 2.0 fills this gap by serving as a ruggedized highly mobile research platform with many features aimed at simplifying payload integration. Multiple teleoperated field testing trials on a variety of terrains validated the rover\u27s ruggedness and ability to operate soundly. Lastly, a deployable pan-tilt camera was designed, built, and tested, as an example payload

    Design and Experimental Evaluation of a Hybrid Wheeled-Leg Exploration Rover in the Context of Multi-Robot Systems

    Get PDF
    With this dissertation, the electromechanic design, implementation, locomotion control, and experimental evaluation of a novel type of hybrid wheeled-leg exploration rover are presented. The actively articulated suspension system of the rover is the basis for advanced locomotive capabilities of a mobile exploration robot. The developed locomotion control system abstracts the complex kinematics of the suspension system and provides platform control inputs usable by autonomous behaviors or human remote control. Design and control of the suspension system as well as experimentation with the resulting rover are in the focus of this thesis. The rover is part of a heterogeneous modular multi-robot exploration system with an aspired sample return mission to the lunar south pole or currently hard-to-access regions on Mars. The multi-robot system pursues a modular and reconfigurable design methodology. It combines heterogeneous robots with different locomotion capabilities for enhanced overall performance. Consequently, the design of the multi-robot system is presented as the frame of the rover developments. The requirements for the rover design originating from the deployment in a modular multi-robot system are accentuated and summarized in this thesis

    Activities of the Center for Space Construction

    Get PDF
    The Center for Space Construction (CSC) at the University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the center is to conduct research into space technology and to directly contribute to space engineering education. The center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Science. The college has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction is prominent evidence of this record. At the inception of CSC, the center was primarily founded on the need for research on in-space construction of large space systems like space stations and interplanetary space vehicles. The scope of CSC's research has now evolved to include the design and construction of all spacecraft, large and small. Within this broadened scope, our research projects seek to impact the underlying technological basis for such spacecraft as remote sensing satellites, communication satellites, and other special purpose spacecraft, as well as the technological basis for large space platforms. The center's research focuses on three areas: spacecraft structures, spacecraft operations and control, and regolith and surface systems. In the area of spacecraft structures, our current emphasis is on concepts and modeling of deployable structures, analysis of inflatable structures, structural damage detection algorithms, and composite materials for lightweight structures. In the area of spacecraft operations and control, we are continuing our previous efforts in process control of in-orbit structural assembly. In addition, we have begun two new efforts in formal approach to spacecraft flight software systems design and adaptive attitude control systems. In the area of regolith and surface systems, we are continuing the work of characterizing the physical properties of lunar regolith, and we are at work on a project on path planning for planetary surface rovers

    Workshop on Advanced Technologies for Planetary Instruments, part 1

    Get PDF
    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments
    • …
    corecore