480 research outputs found

    Exploratory study to explore the role of ICT in the process of knowledge management in an Indian business environment

    Get PDF
    In the 21st century and the emergence of a digital economy, knowledge and the knowledge base economy are rapidly growing. To effectively be able to understand the processes involved in the creating, managing and sharing of knowledge management in the business environment is critical to the success of an organization. This study builds on the previous research of the authors on the enablers of knowledge management by identifying the relationship between the enablers of knowledge management and the role played by information communication technologies (ICT) and ICT infrastructure in a business setting. This paper provides the findings of a survey collected from the four major Indian cities (Chennai, Coimbatore, Madurai and Villupuram) regarding their views and opinions about the enablers of knowledge management in business setting. A total of 80 organizations participated in the study with 100 participants in each city. The results show that ICT and ICT infrastructure can play a critical role in the creating, managing and sharing of knowledge in an Indian business environment

    The enablers and implementation model for mobile KMS in Australian healthcare

    Get PDF
    In this research project, the enablers in implementing mobile KMS in Australian regional healthcare will be investigated, and a validated framework and guidelines to assist healthcare in implementing mobile KMS will also be proposed with both qualitative and quantitative approaches. The outcomes for this study are expected to improve the understanding the enabling factors in implementing mobile KMS in Australian healthcare, as well as provide better guidelines for this process

    Management and Security of IoT systems using Microservices

    Get PDF
    Devices that assist the user with some task or help them to make an informed decision are called smart devices. A network of such devices connected to internet are collectively called as Internet of Things (IoT). The applications of IoT are expanding exponentially and are becoming a part of our day to day lives. The rise of IoT led to new security and management issues. In this project, we propose a solution for some major problems faced by the IoT devices, including the problem of complexity due to heterogeneous platforms and the lack of IoT device monitoring for security and fault tolerance. We aim to solve the above issues in a microservice architecture. We build a data pipeline for IoT devices to send data through a messaging platform Kafka and monitor the devices using the collected data by making real time dashboards and a machine learning model to give better insights of the data. For proof of concept, we test the proposed solution on a heterogeneous cluster, including Raspberry Pi’s and IoT devices from different vendors. We validate our design by presenting some simple experimental results

    CALD : surviving various application-layer DDoS attacks that mimic flash crowd

    Full text link
    Distributed denial of service (DDoS) attack is a continuous critical threat to the Internet. Derived from the low layers, new application-layer-based DDoS attacks utilizing legitimate HTTP requests to overwhelm victim resources are more undetectable. The case may be more serious when suchattacks mimic or occur during the flash crowd event of a popular Website. In this paper, we present the design and implementation of CALD, an architectural extension to protect Web servers against various DDoS attacks that masquerade as flash crowds. CALD provides real-time detection using mess tests but is different from other systems that use resembling methods. First, CALD uses a front-end sensor to monitor thetraffic that may contain various DDoS attacks or flash crowds. Intense pulse in the traffic means possible existence of anomalies because this is the basic property of DDoS attacks and flash crowds. Once abnormal traffic is identified, the sensor sends ATTENTION signal to activate the attack detection module. Second, CALD dynamically records the average frequency of each source IP and check the total mess extent. Theoretically, the mess extent of DDoS attacks is larger than the one of flash crowds. Thus, with some parameters from the attack detection module, the filter is capable of letting the legitimate requests through but the attack traffic stopped. Third, CALD may divide the security modules away from the Web servers. As a result, it keeps maximum performance on the kernel web services, regardless of the harassment from DDoS. In the experiments, the records from www.sina.com and www.taobao.com have proved the value of CALD

    Packet Resonance Strategy: A Spoof Attack Detection and Prevention Mechanism in Cloud Computing Environment

    Get PDF
    Distributed Denial of Service (DDoS) is a major threat to server availability. The attackers hide from view by impersonating their IP addresses as the legitimate users. This Spoofed IP helps the attacker to pass through the authentication phase and to launch the attack. Surviving spoof detection techniques could not resolve different styles of attacks. Packet Resonance Strategy (PRS) armed to detect various types of spoof attacks that destruct the server resources or data theft at Datacenter. PRS ensembles to any Cloud Service Provider (CSP) as they are exclusively responsible for any data leakage and sensitive information hack. PRS uses two-level detection scheme, allows the clients to access Datacenter only when they surpass initial authentication at both levels. PRS provides faster data transmission and time sensitiveness of cloud computing tasks to the authenticated clients. Experimental results proved that the proposed methodology is a better light-weight solution and deployable at server-end

    An Intrusion Detection System Algorithm for Defending MANET against the DDoS Attacks.

    Get PDF
    Mobile ad hoc network (MANET) is rapidly deployable, self configuring network able to communicate with each other without the aid of any centralized system. There is no need for existing infrastructure base network. In MANET Wireless medium is radio frequencies and nodes are mobile, topology can be very dynamically. Nodes must be able to relay traffic since communicating nodes might be out of range. A MANET can be a standalone network or it can be connected to external networks like internet. Multihop operation of MANET requires a routing mechanism designed for mobile nodes are internet access mechanisms, self configuring networks requires an address allocation mechanism, mechanism to detect and act on, merging of existing networks and security mechanisms. As we know that there is no any centralized system so routing is done by node itself. Due to its mobility and self routing capability nature, there are many weaknesses in its security

    Detection and Counter Measure of AL-DDoS Attacks in Web Traffic

    Get PDF
    Distributed Denial-of-Service (DDoS) assaults are a developing danger crosswise over Internet, disturbing access to Information and administrations. Presently days, these assaults are focusing on the application layer. Aggressors are utilizing systems that are exceptionally hard to recognize and relieve. In this task propose another technique to recognize AL-DDoS assaults. This work separates itself from past techniques by considering AL-DDoS assault location in overwhelming spine activity. In addition, the identification of AL-DDoS assaults is effectively deceived by glimmer group movement. By analyzing the entropy of AL-DDoS assaults and glimmer swarms, these model output be utilized to perceive the genuine AL-DDoS assaults. With a quick AL-DDoS identification speed, the channel is equipped for letting the real demands through yet the assault movement is halted
    • …
    corecore