31 research outputs found

    Self-healing network architectures for multiwavelength optical metro/access networks.

    Get PDF
    Sun Xiaofeng.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 61-64).Abstracts in English and Chinese.Chapter CHAPTER 1 --- INTRODUCTION --- p.1Chapter 1.1 --- Optical network evolution --- p.2Chapter 1.1.1 --- Submarine and terrestrial long-haul fibre systems --- p.2Chapter 1.1.2 --- Metropolitan networks --- p.3Chapter 1.1.3 --- Access networks --- p.4Chapter 1.2 --- Motivation of this thesis --- p.6Chapter 1.3 --- Outline of this thesis --- p.7Chapter CHAPTER 2 --- PREVIOUS SELF-HEALING NETWORK ARCHITECTURES --- p.9Chapter 2.1 --- Introduction --- p.10Chapter 2.1.1 --- Previous protection architectures for access networks --- p.10Chapter 2.1.2 --- Previous protection architectures for metro access networks --- p.13Chapter 2.3 --- Previous protection architectures for metro backbone networks --- p.15Chapter 2.3.1 --- Unidirectional path-switched rings (UPSR) --- p.15Chapter 2.3.2 --- Bidirectional line-switched rings (BLSR) --- p.16Chapter 2.3.3 --- Ring interconnection and dual homing --- p.17Chapter 2.4 --- Summary --- p.19Chapter CHAPTER 3 --- SELF-HEALING NETWORK ARCHITECTURE FOR WDM OPTICAL ACCESS NETWORKS --- p.20Chapter 3.1 --- Introduction --- p.21Chapter 3.2 --- Star-Ring Protection Architecture (SRPA) --- p.21Chapter 3.2.1 --- Motivation --- p.21Chapter 3.2.2 --- Network topology of SRPA --- p.22Chapter 3.2.3 --- Wavelength assignment of SRPA --- p.22Chapter 3.2.4 --- Structure of ONU --- p.23Chapter 3.2.5 --- Protection mechanism --- p.25Chapter 3.2.6 --- Experimental demonstration --- p.26Chapter 3.2.7 --- Power budget --- p.28Chapter 3.2.8 --- Summary --- p.28Chapter 3.3 --- Duplicated-Tree Protection Architecture (DTPA) --- p.28Chapter 3.3.1 --- Motivation --- p.28Chapter 3.3.2 --- Network topology and wavelength assignment --- p.29Chapter 3.3.3 --- Structure of OLT --- p.30Chapter 3.3.4 --- Protection mechanism --- p.31Chapter 3.3.5 --- Experimental demonstration --- p.33Chapter 1.1.1 --- Summary --- p.34Chapter 1.4 --- Summary --- p.35Chapter CHAPTER 4 --- SINGLE-FIBER SELF-HEALING WDM RING NETWORK ARCHITECTURE FOR METRO ACCESS NETWORKS --- p.36Chapter 4.1 --- Introduction --- p.37Chapter 4.2 --- Network architecture and wavelength assignment --- p.37Chapter 4.3 --- Structure of access node --- p.39Chapter 4.4 --- Structure of hub node --- p.40Chapter 4.5 --- Protection mechanism --- p.42Chapter 4.6 --- Experimental demonstration --- p.43Chapter 4.7 --- Optimization of access node --- p.47Chapter 4.8 --- Scalability --- p.48Chapter 4.9 --- Summary --- p.49Chapter CHAPTER 5 --- SELF-HEALING WDM MESH NETWORK ARCHITECTURE FOR METRO BACKBONE NETWORKS… --- p.50Chapter 5.1 --- Introduction --- p.51Chapter 5.2 --- Network architecture and node structure --- p.51Chapter 5.3 --- Protection mechanism --- p.53Chapter 5.4 --- Experimental demonstration --- p.55Chapter 5.5 --- Summary --- p.57Chapter CHAPTER 6 --- SUMMARYAND FUTURE WORKS --- p.58Chapter 6.1 --- Summary of the Thesis --- p.59Chapter 6.2 --- Future Works --- p.59LIST OF PUBLICATIONS --- p.61REFERENCES --- p.6

    Impact of Fiber Duplication on Protection Architectures Feasibility for Passive Optical Networks

    Get PDF
    Adaptability of high capacity passive optical network (PON) requires the provision of an efficient fault detection and restoration mechanism throughout the network at an acceptable cost. The readily adapted pre-planned protection strategy relies on component duplication, which significantly increases the cost of deployment for PON. Therefore, it is imperative to determine a suitable component that requires high redundancy and determine the impact of protection for that component on feasibility of PON. Five protection architecture including ITU-T 983.1 Type C, single ring, dual ring, tree- and ring-based architectures with hybrid star-ring topology at the optical distribution network (ODN), are considered to evaluate the impact of fiber duplication in terms of capital expenditure (CAPEX), operation expenditure (OPEX), reliability, and support for maximum number of subscribers. Reliability block diagram (RBD) based analysis shows that desirable 5 nines connection availability is provided by each protection architecture and utilization of ring topology avoids duplication of the fiber but effects the number of subscribers. Furthermore, it is observed that OF duplication at ODN is the main contributor to CAPEX. Collectively hybrid protection architectures provide efficient performance and proves to be a feasible solution for the deployment of survivable PONs at the access domain

    Study of architectures & protection schemes for high-speed WDM-based passive optical access networks utilizing centralized light sources for colorless optical network units

    Get PDF
    Zhang Bo.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 55-59).Abstracts in English and Chinese.Chapter Chapter 1 --- Introduction to Passive Optical Networks --- p.1Chapter 1.1 --- Passive Optical Network (PON) --- p.2Chapter 1.1.1 --- PON architecture --- p.3Chapter 1.1.2 --- PON benefits --- p.4Chapter 1.2 --- The History of PON --- p.4Chapter 1.3 --- WDM-PON --- p.5Chapter 1.4 --- Outline of This Thesis --- p.8Chapter Chapter 2 --- Previous Schemes for Colorless ONU Operation in WDM-PON --- p.9Chapter 2.1 --- Introduction --- p.10Chapter 2.2 --- Previous WDM-PON Architectures for Colorless ONU Operation --- p.10Chapter 2.2.1 --- Spectrum slicing BLS employed at the ONU --- p.11Chapter 2.2.2 --- Centralized broadband light source (BLS) for upstream optical carrier supply --- p.12Chapter 2.2.3 --- Reuse of the downstream carrier at the ONU --- p.17Chapter 2.3 --- Summary --- p.21Chapter Chapter 3 --- WDM-PON with a Centralized Supercontinuum Broadband Light Source for Colorless ONUs --- p.23Chapter 3.1 --- Introduction --- p.24Chapter 3.1.1 --- Introduction to Supercontinuum Generation --- p.24Chapter 3.1.2 --- Introduction to Photonic Crystal Fibers --- p.25Chapter 3.1.3 --- Supercontinuum Generation in a Photonic Crystal Fiber --- p.27Chapter 3.2 --- WDM-PON with Centralized Supercontinuum Broadband Light Source --- p.27Chapter 3.2.1 --- Motivation --- p.27Chapter 3.2.2 --- Proposed access network --- p.28Chapter 3.2.3 --- Experimental demonstration and results --- p.30Chapter 3.2.4 --- Discussions --- p.32Chapter 3.2.5 --- Conclusion --- p.34Chapter 3.3 --- Broadcast Signal Delivery over a WDM-PON based on Supercontinuum Generation --- p.34Chapter 3.3.1 --- Motivation --- p.34Chapter 3.3.2 --- Proposed network architecture --- p.35Chapter 3.3.3 --- Experiment results and discussions --- p.36Chapter 3.3.4 --- Conclusion --- p.38Chapter 3.4 --- Summary --- p.38Chapter Chapter 4 --- A Survivable WDM-PON with Colorless Optical Network Units --- p.39Chapter 4.1 --- Introduction --- p.40Chapter 4.2 --- Previous Protection Schemes --- p.40Chapter 4.3 --- A Survivable WDM-PON with Centralized BLS --- p.44Chapter 4.3.1 --- Network topology and wavelength assignment --- p.45Chapter 4.3.2 --- Protection operation principles --- p.46Chapter 4.3.3 --- Experimental results --- p.47Chapter 4.4 --- Summary --- p.48Chapter Chapter 5 --- Summary and Future Work --- p.50Chapter 5.1 --- Summary of the Thesis --- p.51Chapter 5.2 --- Future Work --- p.52LIST OF PUBLICATIONS --- p.54REFERENCES --- p.5

    Optimization Methods for Optical Long-Haul and Access Networks

    Get PDF
    Optical communications based on fiber optics and the associated technologies have seen remarkable progress over the past two decades. Widespread deployment of optical fiber has been witnessed in backbone and metro networks as well as access segments connecting to customer premises and homes. Designing and developing a reliable, robust and efficient end-to-end optical communication system have thus emerged as topics of utmost importance both to researchers and network operators. To fulfill these requirements, various problems have surfaced and received attention, such as network planning, capacity placement, traffic grooming, traffic scheduling, and bandwidth allocation. The optimal network design aims at addressing (one or more of) these problems based on some optimization objectives. In this thesis, we consider two of the most important problems in optical networks; namely the survivability in optical long-haul networks and the problem of bandwidth allocation and scheduling in optical access networks. For the former, we present efficient and accurate models for availability-aware design and service provisioning in p-cycle based survivable networks. We also derive optimization models for survivable network design based on p-trail, a more general protection structure, and compare its performance with p-cycles. Indeed, major cost savings can be obtained when the optical access and long-haul subnetworks become closer to each other by means of consolidation of access and metro networks. As this distance between long-haul and access networks reduces, and the need and expectations from passive optical access networks (PONs) soar, it becomes crucial to efficiently manage bandwidth in the access while providing the desired level of service availability in the long-haul backbone. We therefore address in this thesis the problem of bandwidth management and scheduling in passive optical networks; we design efficient joint and non-joint scheduling and bandwidth allocation methods for multichannel PON as well as next generation 10Gbps Ethernet PON (10G-EPON) while addressing the problem of coexistence between 10G-EPONs and multichannel PONs

    Optical-WiMAX Hybrid Networks

    Get PDF
    The emergence of bandwidth-intensive Internet services, such ascircuit-quality voice transfer and interactive video gaming, createa high demand for a very qualified next-generation access network.In addition to high bandwidth, these future access networks shouldalso provide improved network availability, flexibility, mobility,reliability, failure protection, quality of service (QoS) supportand cost-effective access. The integration between optical networksand Worldwide Interoperability for Microwave Access (WiMAX) is apromising solution for future access networks. Accordingly, a fewdifferent architectures and MAC protocol components have recentlybeen proposed for the integration between the Ethernet PassiveOptical Network (EPON) and WiMAX. However, the proposedarchitectures contain several drawbacks. Moreover, the EPON-WiMAXhybrid does not yet contain a comprehensive Medium Access Control(MAC) protocol and a mechanism for Quality of Service (QoS) support.Finally, this work introduces the Resilient Packet Ring (RPR)standard, which aims to build high-performance metro edge and metrocore ring networks that interconnect multiple access networks. Theobjective of this thesis is to examine the integration of opticalstandards, such as RPR and EPON, with the WiMAX standard.Subsequently, this integration will be applied to the areas ofarchitecture and MAC Protocol as a promising solution for not onlyaccess networks but also for metro networks.The first part of the thesis examines the EPON-WiMAX integration asa solution for the access network. Specifically, the proposedsolution includes new EPON-WiMAX hybrid network architectures thatare suitable for both urban and rural environment requirements, andit also introduces a joint MAC protocol for these architectures. Theproposed architectures are reliable and provide extended networkcoverage; in particular, reliability is achieved by applying aprotection scheme to the most critical portion of the EPON part ofthe architecture. Additionally, the network coverage of thearchitecture is extended by inserting an intermediate networkbetween the front end and the backhaul network of the traditionalEPON-WiMAX architecture. Subsequently, we propose a comprehensivejoint MAC protocol for the proposed EPON-WiMAX architecture; thisprotocol provides a per-stream quality-of-service guarantee andimproves the network utilization. Also, the proposed joint MACprotocol includes an admission controller, a scheduler and abandwidth allocator.While the first part of the thesis strives to improve the hybridnetwork reliability through protection in the EPON part and extendthe network coverage through innovative methods, the second partattempts to maintain and enhance these objectives by adding areliable technology to the integrated network. Specifically, thissection examines the way in which the RPR network can be integratedwith the proposed EPON-WiMAX architecture to form an RPR-EPON-WiMAXhybrid network, which can be a solution for both access and metronetworks. The proposed architecture is reliable due to thedependability of the RPR standard and the protection mechanismemployed in the EPON network. Moreover, the architecture contains ahigh fault tolerance against node and connection failure. In thesecond part, the joint MAC protocol for the RPR-EPON-WiMAX hybridnetwork includes a multi-level dynamic bandwidth allocationalgorithm, a distributed admission control, a scheduler, and arouting algorithm. This MAC protocol aims to maximize the advantagesof the proposed architecture by distributing its functionalitiesover the parts of the architecture and jointly executing the partsof the MAC protocol

    Protection architectures for multi-wavelength optical networks.

    Get PDF
    by Lee Chi Man.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 63-65).Abstracts in English and Chinese.Chapter CHAPTER 1 --- INTRODUCTION --- p.5Chapter 1.1 --- Background --- p.5Chapter 1.1.1 --- Backbone network - Long haul mesh network problem --- p.5Chapter 1.1.2 --- Access network ´ؤ Last mile problems --- p.8Chapter 1.1.3 --- Network integration --- p.9Chapter 1.2 --- SUMMARY OF INSIGHTS --- p.10Chapter 1.3 --- Contribution of this thesis --- p.11Chapter 1.4 --- Structure of the thesis --- p.11Chapter CHAPTER 2 --- PREVIOUS PROTECTION ARCHITECTURES --- p.12Chapter 2.1 --- Introduction --- p.12Chapter 2.2 --- Traditional physical protection architectures in metro area --- p.13Chapter 2.2.1 --- Self healing ring --- p.17Chapter 2.2.2 --- Some terminology in ring protection --- p.13Chapter 2.2.3 --- Unidirectional path-switched rings (UPSR) [17] --- p.13Chapter 2.2.4 --- Bidirectional line-switched rings (BLSR) [17] --- p.14Chapter 2.2.5 --- Ring interconnection and dual homing [17] --- p.16Chapter 2.3 --- Traditional physical protection architectures in access networks --- p.17Chapter 2.3.1 --- Basic architecture in passive optical networks --- p.17Chapter 2.3.2 --- Fault management issue in access networks --- p.18Chapter 2.3.3 --- Some protection architectures --- p.18Chapter 2.4 --- Recent protection architectures on a ccess networks --- p.21Chapter 2.4.1 --- Star-Ring-Bus architecture --- p.21Chapter 2.5 --- Concluding remarks --- p.22Chapter CHAPTER 3 --- GROUP PROTECTION ARCHITECTURE (GPA) FOR TRAFFIC RESTORATION IN MULTI- WAVELENGTH PASSIVE OPTICAL NETWORKS --- p.23Chapter 3.1 --- Background --- p.23Chapter 3.2 --- Organization of Chapter 3 --- p.24Chapter 3.3 --- Overview of Group Protection Architecture --- p.24Chapter 3.3.1 --- Network architecture --- p.24Chapter 3.3.2 --- Wavelength assignment --- p.25Chapter 3.3.3 --- Normal operation of the scheme --- p.25Chapter 3.3.4 --- Protection mechanism --- p.26Chapter 3.4 --- Enhanced GPA architecture --- p.27Chapter 3.4.1 --- Network architecture --- p.27Chapter 3.4.2 --- Wavelength assignment --- p.28Chapter 3.4.3 --- Realization of network elements --- p.28Chapter 3.4.3.1 --- Optical line terminal (OLT) --- p.28Chapter 3.4.3.2 --- Remote node (RN) --- p.29Chapter 3.4.3.3 --- Realization of optical network unit (ONU) --- p.30Chapter 3.4.4 --- Protection switching and restoration --- p.31Chapter 3.4.5 --- Experimental demonstration --- p.31Chapter 3.5 --- Conclusion --- p.33Chapter CHAPTER 4 --- A NOVEL CONE PROTECTION ARCHITECTURE (CPA) SCHEME FOR WDM PASSIVE OPTICAL ACCESS NETWORKS --- p.35Chapter 4.1 --- Introduction --- p.35Chapter 4.2 --- Single-side Cone Protection Architecture (SS-CPA) --- p.36Chapter 4.2.1 --- Network topology of SS-CPA --- p.36Chapter 4.2.2 --- Wavelength assignment of SS-CPA --- p.36Chapter 4.2.3 --- Realization of remote node --- p.37Chapter 4.2.4 --- Realization of optical network unit --- p.39Chapter 4.2.5 --- Two types of failures --- p.40Chapter 4.2.6 --- Protection mechanism against failure --- p.40Chapter 4.2.6.1 --- Multi-failures of type I failure --- p.40Chapter 4.2.6.2 --- Type II failure --- p.40Chapter 4.2.7 --- Experimental demonstration --- p.41Chapter 4.2.8 --- Power budget --- p.42Chapter 4.2.9 --- Protection capability analysis --- p.42Chapter 4.2.10 --- Non-fully-connected case and its extensibility for addition --- p.42Chapter 4.2.11 --- Scalability --- p.43Chapter 4.2.12 --- Summary --- p.43Chapter 4.3 --- Comparison between GPA and SS-CPA scheme --- p.43Chapter 4.1 --- Resources comparison --- p.43Chapter 4.2 --- Protection capability comparison --- p.44Chapter 4.4 --- Concluding remarks --- p.45Chapter CHAPTER 5 --- MUL 77- WA VELENGTH MUL TICAST NETWORK IN PASSIVE OPTICAL NETWORK --- p.46Chapter 5.1 --- Introduction --- p.46Chapter 5.2 --- Organization of this chapter --- p.47Chapter 5.3 --- Simple Group Multicast Network (SGMN) scheme --- p.47Chapter 5.3.1 --- Network design principle --- p.47Chapter 5.3.2 --- Wavelength assignment of SGMN --- p.48Chapter 5.3.3 --- Realization of remote node --- p.49Chapter 5.3.3 --- Realization of optical network unit --- p.50Chapter 5.3.4 --- Power budget --- p.51Chapter 5.4 --- A mulTI- wa velength a ccess network with reconfigurable multicast …… --- p.51Chapter 5.4.1 --- Motivation --- p.51Chapter 5.4.2 --- Background --- p.51Chapter 5.4.3 --- Network design principle --- p.52Chapter 5.4.4 --- Wavelength assignment --- p.52Chapter 5.4.5 --- Remote Node design --- p.53Chapter 5.4.6 --- Optical network unit design --- p.54Chapter 5.4.7 --- Multicast connection pattern --- p.55Chapter 5.4.8 --- Multicast group selection in OLT --- p.57Chapter 5.4.9 --- Scalability --- p.57Chapter 5.4.10 --- Experimental configuration --- p.58Chapter 5.4.11 --- Concluding remarks --- p.59Chapter CHAPTER 6 --- CONCLUSIONS --- p.60LIST OF PUBLICATIONS: --- p.62REFERENCES: --- p.6

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore