Optical-WiMAX Hybrid Networks

Abstract

The emergence of bandwidth-intensive Internet services, such ascircuit-quality voice transfer and interactive video gaming, createa high demand for a very qualified next-generation access network.In addition to high bandwidth, these future access networks shouldalso provide improved network availability, flexibility, mobility,reliability, failure protection, quality of service (QoS) supportand cost-effective access. The integration between optical networksand Worldwide Interoperability for Microwave Access (WiMAX) is apromising solution for future access networks. Accordingly, a fewdifferent architectures and MAC protocol components have recentlybeen proposed for the integration between the Ethernet PassiveOptical Network (EPON) and WiMAX. However, the proposedarchitectures contain several drawbacks. Moreover, the EPON-WiMAXhybrid does not yet contain a comprehensive Medium Access Control(MAC) protocol and a mechanism for Quality of Service (QoS) support.Finally, this work introduces the Resilient Packet Ring (RPR)standard, which aims to build high-performance metro edge and metrocore ring networks that interconnect multiple access networks. Theobjective of this thesis is to examine the integration of opticalstandards, such as RPR and EPON, with the WiMAX standard.Subsequently, this integration will be applied to the areas ofarchitecture and MAC Protocol as a promising solution for not onlyaccess networks but also for metro networks.The first part of the thesis examines the EPON-WiMAX integration asa solution for the access network. Specifically, the proposedsolution includes new EPON-WiMAX hybrid network architectures thatare suitable for both urban and rural environment requirements, andit also introduces a joint MAC protocol for these architectures. Theproposed architectures are reliable and provide extended networkcoverage; in particular, reliability is achieved by applying aprotection scheme to the most critical portion of the EPON part ofthe architecture. Additionally, the network coverage of thearchitecture is extended by inserting an intermediate networkbetween the front end and the backhaul network of the traditionalEPON-WiMAX architecture. Subsequently, we propose a comprehensivejoint MAC protocol for the proposed EPON-WiMAX architecture; thisprotocol provides a per-stream quality-of-service guarantee andimproves the network utilization. Also, the proposed joint MACprotocol includes an admission controller, a scheduler and abandwidth allocator.While the first part of the thesis strives to improve the hybridnetwork reliability through protection in the EPON part and extendthe network coverage through innovative methods, the second partattempts to maintain and enhance these objectives by adding areliable technology to the integrated network. Specifically, thissection examines the way in which the RPR network can be integratedwith the proposed EPON-WiMAX architecture to form an RPR-EPON-WiMAXhybrid network, which can be a solution for both access and metronetworks. The proposed architecture is reliable due to thedependability of the RPR standard and the protection mechanismemployed in the EPON network. Moreover, the architecture contains ahigh fault tolerance against node and connection failure. In thesecond part, the joint MAC protocol for the RPR-EPON-WiMAX hybridnetwork includes a multi-level dynamic bandwidth allocationalgorithm, a distributed admission control, a scheduler, and arouting algorithm. This MAC protocol aims to maximize the advantagesof the proposed architecture by distributing its functionalitiesover the parts of the architecture and jointly executing the partsof the MAC protocol

    Similar works