22 research outputs found

    Improved Algorithm for Degree Bounded Survivable Network Design Problem

    Full text link
    We consider the Degree-Bounded Survivable Network Design Problem: the objective is to find a minimum cost subgraph satisfying the given connectivity requirements as well as the degree bounds on the vertices. If we denote the upper bound on the degree of a vertex v by b(v), then we present an algorithm that finds a solution whose cost is at most twice the cost of the optimal solution while the degree of a degree constrained vertex v is at most 2b(v) + 2. This improves upon the results of Lau and Singh and that of Lau, Naor, Salavatipour and Singh

    Matroidal Degree-Bounded Minimum Spanning Trees

    Full text link
    We consider the minimum spanning tree (MST) problem under the restriction that for every vertex v, the edges of the tree that are adjacent to v satisfy a given family of constraints. A famous example thereof is the classical degree-constrained MST problem, where for every vertex v, a simple upper bound on the degree is imposed. Iterative rounding/relaxation algorithms became the tool of choice for degree-bounded network design problems. A cornerstone for this development was the work of Singh and Lau, who showed for the degree-bounded MST problem how to find a spanning tree violating each degree bound by at most one unit and with cost at most the cost of an optimal solution that respects the degree bounds. However, current iterative rounding approaches face several limits when dealing with more general degree constraints. In particular, when several constraints are imposed on the edges adjacent to a vertex v, as for example when a partition of the edges adjacent to v is given and only a fixed number of elements can be chosen out of each set of the partition, current approaches might violate each of the constraints by a constant, instead of violating all constraints together by at most a constant number of edges. Furthermore, it is also not clear how previous iterative rounding approaches can be used for degree constraints where some edges are in a super-constant number of constraints. We extend iterative rounding/relaxation approaches both on a conceptual level as well as aspects involving their analysis to address these limitations. This leads to an efficient algorithm for the degree-constrained MST problem where for every vertex v, the edges adjacent to v have to be independent in a given matroid. The algorithm returns a spanning tree T of cost at most OPT, such that for every vertex v, it suffices to remove at most 8 edges from T to satisfy the matroidal degree constraint at v

    Approximating Minimum-Cost k-Node Connected Subgraphs via Independence-Free Graphs

    Full text link
    We present a 6-approximation algorithm for the minimum-cost kk-node connected spanning subgraph problem, assuming that the number of nodes is at least k3(k−1)+kk^3(k-1)+k. We apply a combinatorial preprocessing, based on the Frank-Tardos algorithm for kk-outconnectivity, to transform any input into an instance such that the iterative rounding method gives a 2-approximation guarantee. This is the first constant-factor approximation algorithm even in the asymptotic setting of the problem, that is, the restriction to instances where the number of nodes is lower bounded by a function of kk.Comment: 20 pages, 1 figure, 28 reference

    On Generalizations of Network Design Problems with Degree Bounds

    Get PDF
    Iterative rounding and relaxation have arguably become the method of choice in dealing with unconstrained and constrained network design problems. In this paper we extend the scope of the iterative relaxation method in two directions: (1) by handling more complex degree constraints in the minimum spanning tree problem (namely, laminar crossing spanning tree), and (2) by incorporating `degree bounds' in other combinatorial optimization problems such as matroid intersection and lattice polyhedra. We give new or improved approximation algorithms, hardness results, and integrality gaps for these problems.Comment: v2, 24 pages, 4 figure

    Max-weight integral multicommodity flow in spiders and high-capacity trees

    Get PDF
    Abstract. We consider the max-weight integer multicommodity flow problem in trees. In this problem we are given an edge-capacitated tree and weighted pairs of terminals, and the objective is to find a max-weight integral flow between terminal pairs subject to the capacities. This problem was shown to be APX-hard by Garg, Vazirani and Yannakakis [Algorithmica, 1997], and a 4-approximation was given by Chekuri, Mydlarz and Shepherd [ACM Trans. Alg., 2007]. Some special cases are known to be solvable in polynomial time, including when the graph is a star (via b-matching) or a path. First, when every edge has capacity at least µ ≥ 2, we use iterated relaxation to obtain an improved approximation ratio of min{3, 1+4/µ+6/(µ 2 −µ)}. We show this ratio bounds the integrality gap of the natural LP relaxation. A complementary hardness result yields a 1+Θ(1/µ) threshold of approximability (if P ̸ = NP). Second, we extend the range of instances for which exact solutions can be found efficiently. When the tree is a spider (i.e. if only one vertex has degree greater than 2) we give a polynomial-time algorithm to find an optimal solution, as well as a polyhedral description of the integer hull of all In the max-weight integral multicommodity flow problem (WMCF), we are given an undirected supply graph G = (V,E), terminal pairs (s1,t1),...,(sk,tk) where si,ti ∈ V, non-negative weight
    corecore