49 research outputs found

    Differentiated quality-of-recovery and quality-of-protection in survivable WDM mesh networks

    Get PDF
    In the modern telecommunication business, there is a need to provide different Quality-of-Recovery (QoR) and Quality-of-Protection (QoP) classes in order to accommodate as many customers as possible, and to optimize the protection capacity cost. Prevalent protection methods to provide specific QoS related to protection are based on pre-defined shape protection structures (topologies), e.g., p -cycles and p -trees. Although some of these protection patterns are known to provide a good trade-off among the different protection parameters, their shapes can limit their deployment in some specific network conditions, e.g., a constrained link spare capacity budget and traffic distribution. In this thesis, we propose to re-think the design process of protection schemes in survivable WDM networks by adopting a hew design approach where the shapes of the protection structures are decided based on the targeted QoR and QoP guarantees, and not the reverse. We focus on the degree of pre-configuration of the protection topologies, and use fully and partially pre-cross connected p -structures, and dynamically cross connected p -structures. In QoR differentiation, we develop different approaches for pre-configuring the protection capacity in order to strike different balances between the protection cost and the availability requirements in the network; while in the QoP differentiation, we focus on the shaping of the protection structures to provide different grades of protection including single and dual-link failure protection. The new research directions proposed and developed in this thesis are intended to help network operators to effectively support different Quality-of-Recovery and Quality-of-Protection classes. All new ideas have been translated into mathematical models for which we propose practical and efficient design methods in order to optimize the inherent cost to the different designs of protection schemes. Furthermore, we establish a quantitative relation between the degree of pre-configuration of the protection structures and their costs in terms of protection capacity. Our most significant contributions are the design and development of Pre-Configured Protection Structure (p-structure) and Pre-Configured Protection Extended-Tree (p -etree) based schemes. Thanks to the column generation modeling and solution approaches, we propose a new design approach of protection schemes where we deploy just enough protection to provide different quality of recovery and protection classe

    Heterogeneous Reconfigurable Fabrics for In-circuit Training and Evaluation of Neuromorphic Architectures

    Get PDF
    A heterogeneous device technology reconfigurable logic fabric is proposed which leverages the cooperating advantages of distinct magnetic random access memory (MRAM)-based look-up tables (LUTs) to realize sequential logic circuits, along with conventional SRAM-based LUTs to realize combinational logic paths. The resulting Hybrid Spin/Charge FPGA (HSC-FPGA) using magnetic tunnel junction (MTJ) devices within this topology demonstrates commensurate reductions in area and power consumption over fabrics having LUTs constructed with either individual technology alone. Herein, a hierarchical top-down design approach is used to develop the HSCFPGA starting from the configurable logic block (CLB) and slice structures down to LUT circuits and the corresponding device fabrication paradigms. This facilitates a novel architectural approach to reduce leakage energy, minimize communication occurrence and energy cost by eliminating unnecessary data transfer, and support auto-tuning for resilience. Furthermore, HSC-FPGA enables new advantages of technology co-design which trades off alternative mappings between emerging devices and transistors at runtime by allowing dynamic remapping to adaptively leverage the intrinsic computing features of each device technology. HSC-FPGA offers a platform for fine-grained Logic-In-Memory architectures and runtime adaptive hardware. An orthogonal dimension of fabric heterogeneity is also non-determinism enabled by either low-voltage CMOS or probabilistic emerging devices. It can be realized using probabilistic devices within a reconfigurable network to blend deterministic and probabilistic computational models. Herein, consider the probabilistic spin logic p-bit device as a fabric element comprising a crossbar-structured weighted array. The Programmability of the resistive network interconnecting p-bit devices can be achieved by modifying the resistive states of the array\u27s weighted connections. Thus, the programmable weighted array forms a CLB-scale macro co-processing element with bitstream programmability. This allows field programmability for a wide range of classification problems and recognition tasks to allow fluid mappings of probabilistic and deterministic computing approaches. In particular, a Deep Belief Network (DBN) is implemented in the field using recurrent layers of co-processing elements to form an n x m1 x m2 x ::: x mi weighted array as a configurable hardware circuit with an n-input layer followed by i ≥ 1 hidden layers. As neuromorphic architectures using post-CMOS devices increase in capability and network size, the utility and benefits of reconfigurable fabrics of neuromorphic modules can be anticipated to continue to accelerate

    Aeronautical Engineering: A Continuing Bibliography with Indexes (supplement 194)

    Get PDF
    This bibliography lists 369 reports, articles and other documents introduced into the NASA scientific and technical information system in November 1985

    Nature-inspired survivability: Prey-inspired survivability countermeasures for cloud computing security challenges

    Get PDF
    As cloud computing environments become complex, adversaries have become highly sophisticated and unpredictable. Moreover, they can easily increase attack power and persist longer before detection. Uncertain malicious actions, latent risks, Unobserved or Unobservable risks (UUURs) characterise this new threat domain. This thesis proposes prey-inspired survivability to address unpredictable security challenges borne out of UUURs. While survivability is a well-addressed phenomenon in non-extinct prey animals, applying prey survivability to cloud computing directly is challenging due to contradicting end goals. How to manage evolving survivability goals and requirements under contradicting environmental conditions adds to the challenges. To address these challenges, this thesis proposes a holistic taxonomy which integrate multiple and disparate perspectives of cloud security challenges. In addition, it proposes the TRIZ (Teorija Rezbenija Izobretatelskib Zadach) to derive prey-inspired solutions through resolving contradiction. First, it develops a 3-step process to facilitate interdomain transfer of concepts from nature to cloud. Moreover, TRIZ’s generic approach suggests specific solutions for cloud computing survivability. Then, the thesis presents the conceptual prey-inspired cloud computing survivability framework (Pi-CCSF), built upon TRIZ derived solutions. The framework run-time is pushed to the user-space to support evolving survivability design goals. Furthermore, a target-based decision-making technique (TBDM) is proposed to manage survivability decisions. To evaluate the prey-inspired survivability concept, Pi-CCSF simulator is developed and implemented. Evaluation results shows that escalating survivability actions improve the vitality of vulnerable and compromised virtual machines (VMs) by 5% and dramatically improve their overall survivability. Hypothesis testing conclusively supports the hypothesis that the escalation mechanisms can be applied to enhance the survivability of cloud computing systems. Numeric analysis of TBDM shows that by considering survivability preferences and attitudes (these directly impacts survivability actions), the TBDM method brings unpredictable survivability information closer to decision processes. This enables efficient execution of variable escalating survivability actions, which enables the Pi-CCSF’s decision system (DS) to focus upon decisions that achieve survivability outcomes under unpredictability imposed by UUUR

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    NASA Capability Roadmaps Executive Summary

    Get PDF
    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps

    Social Insect-Inspired Adaptive Hardware

    Get PDF
    Modern VLSI transistor densities allow large systems to be implemented within a single chip. As technologies get smaller, fundamental limits of silicon devices are reached resulting in lower design yields and post-deployment failures. Many-core systems provide a platform for leveraging the computing resource on offer by deep sub-micron technologies and also offer high-level capabilities for mitigating the issues with small feature sizes. However, designing for many-core systems that can adapt to in-field failures and operation variability requires an extremely large multi-objective optimisation space. When a many-core reaches the size supported by the densities of modern technologies (thousands of processing cores), finding design solutions in this problem space becomes extremely difficult. Many biological systems show properties that are adaptive and scalable. This thesis proposes a self-optimising and adaptive, yet scalable, design approach for many-core based on the emergent behaviours of social-insect colonies. In these colonies there are many thousands of individuals with low intelligence who contribute, without any centralised control, to complete a wide range of tasks to build and maintain the colony. The experiments presented translate biological models of social-insect intelligence into simple embedded intelligence circuits. These circuits sense low-level system events and use this manage the parameters of the many-core's Network-on-Chip (NoC) during runtime. Centurion, a 128-node many-core, was created to investigate these models at large scale in hardware. The results show that, by monitoring a small number of signals within each NoC router, task allocation emerges from the social-insect intelligence models that can self-configure to support representative applications. It is demonstrated that emergent task allocation supports fault tolerance with no extra hardware overhead. The response-threshold decision making circuitry uses a negligible amount of hardware resources relative to the size of the many-core and is an ideal technology for implementing embedded intelligence for system runtime management of large-complexity single-chip systems

    Soft-Error Resilience Framework For Reliable and Energy-Efficient CMOS Logic and Spintronic Memory Architectures

    Get PDF
    The revolution in chip manufacturing processes spanning five decades has proliferated high performance and energy-efficient nano-electronic devices across all aspects of daily life. In recent years, CMOS technology scaling has realized billions of transistors within large-scale VLSI chips to elevate performance. However, these advancements have also continually augmented the impact of Single-Event Transient (SET) and Single-Event Upset (SEU) occurrences which precipitate a range of Soft-Error (SE) dependability issues. Consequently, soft-error mitigation techniques have become essential to improve systems\u27 reliability. Herein, first, we proposed optimized soft-error resilience designs to improve robustness of sub-micron computing systems. The proposed approaches were developed to deliver energy-efficiency and tolerate double/multiple errors simultaneously while incurring acceptable speed performance degradation compared to the prior work. Secondly, the impact of Process Variation (PV) at the Near-Threshold Voltage (NTV) region on redundancy-based SE-mitigation approaches for High-Performance Computing (HPC) systems was investigated to highlight the approach that can realize favorable attributes, such as reduced critical datapath delay variation and low speed degradation. Finally, recently, spin-based devices have been widely used to design Non-Volatile (NV) elements such as NV latches and flip-flops, which can be leveraged in normally-off computing architectures for Internet-of-Things (IoT) and energy-harvesting-powered applications. Thus, in the last portion of this dissertation, we design and evaluate for soft-error resilience NV-latching circuits that can achieve intriguing features, such as low energy consumption, high computing performance, and superior soft errors tolerance, i.e., concurrently able to tolerate Multiple Node Upset (MNU), to potentially become a mainstream solution for the aerospace and avionic nanoelectronics. Together, these objectives cooperate to increase energy-efficiency and soft errors mitigation resiliency of larger-scale emerging NV latching circuits within iso-energy constraints. In summary, addressing these reliability concerns is paramount to successful deployment of future reliable and energy-efficient CMOS logic and spintronic memory architectures with deeply-scaled devices operating at low-voltages

    Aeronautical engineering: A continuing bibliography with indexes (supplement 247)

    Get PDF
    This bibliography lists 437 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore