14 research outputs found

    Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks

    Get PDF
    With the fast development of wireless technologies, wireless mesh networks (WMNs) are becoming an important networking infrastructure due to their low cost and increased high speed wireless internet connectivity. This paper implements a simulation system based on particle swarm optimisation (PSO) in order to solve the problem of mesh router placement in WMNs. Four replacement methods of mesh routers are considered: constriction method (CM), random inertia weight method (RIWM), linearly decreasing Vmax method (LDVM) and linearly decreasing inertia weight method (LDIWM). Simulation results are provided, showing that the CM converges very fast, but has the worst performance among the methods. The considered performance metrics are the size of giant component (SGC) and the number of covered mesh clients (NCMC). The RIWM converges fast and the performance is good. The LDIWM is a combination of RIWM and LDVM. The LDVM converges after 170 number of phases but has a good performance.Peer ReviewedPostprint (author's final draft

    Multi - Channel Wireless Mesh Networks

    Get PDF

    Time series analysis to predict link quality of wireless community networks

    Get PDF
    Community networks have emerged under the mottosCommunity networks have emerged under the mottos “break the strings that are limiting you”, “don't buy the network, be the network” or “a free net for everyone is possible”. Such networks create a measurable social impact as they provide to the community the right and opportunity of communication. As any other network that mixes wired and wireless links, the routing protocol must face several challenges that arise from the unreliable nature of the wireless medium. Link quality tracking helps the routing layer to select links that maximize the delivery rate and minimize traffic congestion. Moreover, link quality prediction has proved to be a technique that surpasses link quality tracking by foreseeing which links are more likely to change its quality. In this work, we focus on link quality prediction by means of a time series analysis. We apply this prediction technique in the routing layer of large-scale, distributed, and decentralized networks. We demonstrate that it is possible to accurately predict the link quality in 98% of the instances, both in the short and the long terms. Particularly, we analyse the behaviour of the links globally to identify the best prediction algorithm and metric, the impact of lag windows in the results, the prediction accuracy some time steps ahead into the future, the degradation of prediction over time, and the correlation of prediction with topological features. Moreover, we also analyse the behaviour of links individually to identify the variability of link quality prediction between links, and the variability of link quality prediction over time. Finally, we also present an optimized prediction method that considers the knowledge about the expected link quality values.Peer ReviewedPostprint (author's final draft

    Smart Community Wireless Platforms: Costs, Benefits, Drawbacks, Risks

    Get PDF
    A wireless network covering most of the city is a key component of a smart city. Although the wireless network offers many benefits, a key issue is the costs associated with laying out the infrastructure and services, making the bandwidth available and maintaining the services. We believe community involvement is important in building city-wide wireless networks. Indeed, many community wireless networks have been successful. Could the city inspire and assist the communities with building their wireless networks, and then unite them for a city-wide wireless network? We address the first question by presenting a model where municipality, communities and smart utility providers work together to create a platform, smart community wireless platform, for a community where platform sides work together toward achieving smart community objectives. One challenge is to estimate the total cost, benefits and drawbacks of such platforms. Another challenge is to model risks and mitigation plans for their success. We examine relevant dynamics in measuring the total cost, benefits, drawbacks and risks of smart community wireless platforms and develop models for estimating their success under various scenarios. To develop models, we use an intelligence framework that incorporates systems dynamics modelling with statistical, economical and machine learning methods

    Topology preservation and control approach for interference aware non-overlapping channel assignment in wireless mesh networks

    Get PDF
    The Wireless Mesh Networks (WMN) has attracted significant interests due to their fast and inexpensive deployment and the ability to provide flexible and ubiquitous internet access. A key challenge to deploy the WMN is the interference problem between the links. The interference results in three problems of limited throughput, capacity and fairness of the WMN. The topology preservation strategy is used in this research to improve the throughput and address the problems of link failure and partitioning of the WMN. However, the existing channel assignment algorithms, based on the topology preservation strategy, result in high interference. Thus, there is a need to improve the network throughput by using the topology preservation strategy while the network connectivity is maintained. The problems of fairness and network capacity in the dense networks are due to limited available resources in WMN. Hence, efficient exploitation of the available resources increases the concurrent transmission between the links and improves the network performance. Firstly, the thesis proposes a Topology Preservation for Low Interference Channel Assignment (TLCA) algorithm to mitigate the impact of interference based on the topology preservation strategy. Secondly, it proposes the Max-flow based on Topology Control Channel Assignment (MTCA) algorithm to improve the network capacity by removing useless links from the original topology. Thirdly, the proposed Fairness Distribution of the Non-Overlapping Channels (FNOC) algorithm improves the fairness of the WMN through an equitable distribution of the non-overlapping channels between the wireless links. The F-NOC is based on the Differential Evolution optimization algorithm. The numerical and simulation results indicate that the proposed algorithms perform better compared to Connected Low Interference Channel Assignment algorithm (CLICA) in terms of network capacity (19%), fractional network interference (80%) and network throughput (28.6%). In conclusion, the proposed algorithms achieved higher throughput, better network capacity and lower interference compared to previous algorithms

    Survey of Experimental Evaluation Studies for Wireless Mesh Network Deployments in Urban Areas Towards Ubiquitous Internet

    Get PDF
    Establishing wireless networks in urban areas that can provide ubiquitous Internet access to end-users is a central part of the efforts towards defining the Internet of the future. In recent years, Wireless Mesh Network (WMN) backbone infrastructures are proposed as a cost effective technology to provide city-wide Internet access. Studies that evaluate the performance of city-wide mesh network deployments via experiments provide essential information on various challenges of building them. In this survey, we particularly focus on such studies and provide brief conclusions on the problems, benefits, and future research directions of city-wide WMNs

    Survey of Experimental Evaluation Studies for Wireless Mesh Network Deployments in Urban Areas Towards Ubiquitous Internet

    No full text
    Establishing wireless networks in urban areas that can provide ubiquitous Internet access to end-users is a central part of the efforts towards defining the Internet of the future. In recent years, Wireless Mesh Network (WMN) backbone infrastructures are proposed as a cost effective technology to provide city-wide Internet access. Studies that evaluate the performance of city-wide mesh network deployments via experiments provide essential information on various challenges of building them. In this survey, we particularly focus on such studies and provide brief conclusions on the problems, benefits, and future research directions of city-wide WMNs
    corecore