6,434 research outputs found

    Surrogate modeling of thermodynamic equilibria: applications, sampling and optimization

    Get PDF
    Models based on first principles are an effective way to model chemical processes. The quality of these depends critically on the accurate description of thermodynamic equilibria. This is provided by modern thermodynamic models, e.g., PC-SAFT, but they come with a high computational cost, which makes process optimization challenging. This can be addressed by using surrogate models to approximate the equilibrium calculations. A high accuracy of the surrogate model can be achieved by carefully choosing the points at which the original function is evaluated to create data for the training of the surrogate models, called sampling. Using a case study, different approaches to sampling are discussed and evaluated with a focus on new approaches to adaptive sampling

    Predictive Scale-Bridging Simulations through Active Learning

    Full text link
    Throughout computational science, there is a growing need to utilize the continual improvements in raw computational horsepower to achieve greater physical fidelity through scale-bridging over brute-force increases in the number of mesh elements. For instance, quantitative predictions of transport in nanoporous media, critical to hydrocarbon extraction from tight shale formations, are impossible without accounting for molecular-level interactions. Similarly, inertial confinement fusion simulations rely on numerical diffusion to simulate molecular effects such as non-local transport and mixing without truly accounting for molecular interactions. With these two disparate applications in mind, we develop a novel capability which uses an active learning approach to optimize the use of local fine-scale simulations for informing coarse-scale hydrodynamics. Our approach addresses three challenges: forecasting continuum coarse-scale trajectory to speculatively execute new fine-scale molecular dynamics calculations, dynamically updating coarse-scale from fine-scale calculations, and quantifying uncertainty in neural network models

    A surrogate accelerated multicanonical Monte Carlo method for uncertainty quantification

    Full text link
    In this work we consider a class of uncertainty quantification problems where the system performance or reliability is characterized by a scalar parameter yy. The performance parameter yy is random due to the presence of various sources of uncertainty in the system, and our goal is to estimate the probability density function (PDF) of yy. We propose to use the multicanonical Monte Carlo (MMC) method, a special type of adaptive importance sampling algorithm, to compute the PDF of interest. Moreover, we develop an adaptive algorithm to construct local Gaussian process surrogates to further accelerate the MMC iterations. With numerical examples we demonstrate that the proposed method can achieve several orders of magnitudes of speedup over the standard Monte Carlo method

    Adaptive physics-informed neural operator for coarse-grained non-equilibrium flows

    Full text link
    This work proposes a new machine learning (ML)-based paradigm aiming to enhance the computational efficiency of non-equilibrium reacting flow simulations while ensuring compliance with the underlying physics. The framework combines dimensionality reduction and neural operators through a hierarchical and adaptive deep learning strategy to learn the solution of multi-scale coarse-grained governing equations for chemical kinetics. The proposed surrogate's architecture is structured as a tree, with leaf nodes representing separate neural operator blocks where physics is embedded in the form of multiple soft and hard constraints. The hierarchical attribute has two advantages: i) It allows the simplification of the training phase via transfer learning, starting from the slowest temporal scales; ii) It accelerates the prediction step by enabling adaptivity as the surrogate's evaluation is limited to the necessary leaf nodes based on the local degree of non-equilibrium of the gas. The model is applied to the study of chemical kinetics relevant for application to hypersonic flight, and it is tested here on pure oxygen gas mixtures. In 0-D scenarios, the proposed ML framework can adaptively predict the dynamics of almost thirty species with a maximum relative error of 4.5% for a wide range of initial conditions. Furthermore, when employed in 1-D shock simulations, the approach shows accuracy ranging from 1% to 4.5% and a speedup of one order of magnitude compared to conventional implicit schemes employed in an operator-splitting integration framework. Given the results presented in the paper, this work lays the foundation for constructing an efficient ML-based surrogate coupled with reactive Navier-Stokes solvers for accurately characterizing non-equilibrium phenomena in multi-dimensional computational fluid dynamics simulations
    corecore