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Models based on first principles are an effective way to model chemical processes. The quality of these depends critically

on the accurate description of thermodynamic equilibria. This is provided by modern thermodynamic models, e.g.,

PC-SAFT, but they come with a high computational cost, which makes process optimization challenging. This can be

addressed by using surrogate models to approximate the equilibrium calculations. A high accuracy of the surrogate model

can be achieved by carefully choosing the points at which the original function is evaluated to create data for the training

of the surrogate models, called sampling. Using a case study, different approaches to sampling are discussed and evaluated

with a focus on new approaches to adaptive sampling.
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1 Introduction

Industrial chemical processes can often be described accu-
rately by models based on first principles. A core element of
these models are thermodynamic models of phase equilib-
ria. For complex mixtures, advanced thermodynamic mod-
els as the perturbed chain statistical associating fluid theory
(PC-SAFT) equation of state [1] provide reliable predic-
tions, but this comes at the expense of having to solve the
thermodynamic models iteratively. Thus, the complexity of
the system of equations that have to be solved by the simu-
lator increases, especially if the thermodynamic model has
to be solved many times, e.g., when simulating distillation
or extraction columns [2]. This can make the convergence
of large flowsheets challenging and lead to long computa-
tion times. A solution for this issue is the use of surrogate
models. These are generic black-box models that can be
used to approximate any functional relationship, given
there is enough data available. This contribution deals with
parameterizing surrogate models of complex thermody-
namic models. Other applications of surrogate models have
been described for models that contain partial differential
equations [3] and for CFD models [4].

The main steps of applying surrogate models for the
approximation of thermodynamic equilibrium calculations
are shown in Fig. 1. There are several steps that must be
performed to determine a suitable surrogate model for an
application. The first important decision is how to choose
the input and output variables of the surrogate model such
that it can efficiently represent the rigorous equilibrium
calculations. Possible options are described in Sect. 2 of this
paper. After deciding on the structure of the surrogate mod-
el, the next step then is to parameterize or to train the

chosen model, which requires sufficient data. In the case
considered here, this data will be generated by the known
rigorous model, but as the model calls are computation-
intensive the number of data points should be as small as
possible. This points to the issue how to choose the data
points that are used for training, which is also called sam-
pling, such that not more samples than necessary need to
be evaluated. Different sampling methods are discussed in
Sect. 3 and 6.

The application of surrogate models for phase equilibria
is discussed for the optimization of the process flowsheet
for the hydroformylation of 1-dodecene in a thermomor-
phic solvent system. The case study is described in Sect. 4,
and the results are presented in Sect. 5 and 6. Finally, in
Sect. 7 the main aspects are summarized and an outlook to
further research is given.

2 Input/Output Representation of Phase
Equilibria for Surrogate Modeling

Representing a phase equilibrium in a process model em-
ploying surrogate models can, in principle, be done by
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approximating any element in the original equilibrium
calculation. For example, the surrogate model can approxi-
mate the complete iterative equilibrium computation, i.e.,
compute the resulting phase compositions as a function of
the feed properties. This is referred to as the direct method.

Since the number of phases may not be constant, a classi-
fication surrogate to determine the number of phases can
be composed with a regression surrogate, which predicts
the composition of the phases if and only if two phases
exist, according to the classifier as proposed in [5].

As an alternative, one can implement the calculation of
the equilibrium in the process model and provide thermo-
dynamic information via auxiliary quantities, e.g., the fugac-
ity coefficients. This is called the indirect method, see [6].
In this case, the process model into which the surrogate is
embedded has to include the isofugacity constraints explic-
itly. This results in less effort to train the surrogate model
but a more difficult problem that has to be solved in process
simulation and optimization.

Further, a decision has to be taken on how to represent
the thermodynamic state as the input for the surrogate
model. It is advisable to minimize the number of descrip-
tors by including simple constraints directly into the defini-
tion of the inputs. A common representation is using molar
fractions for all but one component, together with tempera-
ture and pressure.

In the direct method we propose to use a special form of
the phase distribution coefficients ki as defined in Eq. (1) as
outputs. This definition implicitly considers that the con-
centrations in two phases in equilibrium lie on a line that
goes through the feed composition. These should not be
confused with the usual distribution coefficients Ki, which
are shown in Eq. (2).

ki ¼
_nI

i

_nF
i
¼ xI

i

xF
i

xF
i � xII

i

xI
i � xII

i
(1)

Ki ¼
xII

i

xI
i

(2)

For gas-liquid equilibria the output can conveniently be
defined as the solubility of the gaseous components for a
given pressure, temperature, and composition of the liquid
phase.

3 Sampling Techniques

In this chapter, different sampling strategies are discussed.
Generally, sampling strategies can be divided into explora-
tive and exploitative strategies. Explorative sampling de-
notes distributing samples such that they cover the input
space as well as possible, while exploitation refers to focus-
ing the sampling on regions of interest by an evaluation of
the model predictions. As the model error at possible new
sampling points is not available before the sampling, tech-
niques for the estimation of the variance of the predictions
at these points have to be employed. The relative weight of
exploration and exploitation is a key parameter in sampling
strategies.

3.1 Explorative Sampling

Exploration is largely independent of the type of surrogate
model and the behavior of the original model as it only
targets a broad and even distribution of the sample points.
Latin hypercube sampling (LHS) is a typical method that
builds upon a discretization into levels in the same manner
as in a full factorial design, but the number of samples can
be chosen arbitrarily [7]. This is achieved by discretizing
the input space along each dimension into as many levels as
there are samples to be determined. Samples are then placed
such that no two samples share a discretization level in any
dimension. An example of this design is shown in Fig. 2.

Instead of choosing all samples at the same time, another
approach is to repeatedly add samples in a sequential
way, e.g., to maximize the distance to the closest existing
sample.

Chem. Ing. Tech. 2021, 93, No. 12, 1898–1906 ª 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH www.cit-journal.com

Figure 1. Main steps of applying surrogate modeling for thermodynamic equilibrium computations.
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3.2 Adaptive Sampling for Better Global Accuracy

In explorative sampling, the objective is to distribute sam-
ples as evenly as possible throughout the input space. If the
original function shows a larger variability in one region, it
can be beneficial to focus the sampling more on the regions
with large local variations. This is the goal of the adaptive
sampling algorithm presented in [8]. Eason and Cremaschi
[9] extended this idea to address the exploration vs. exploi-
tation trade-off, which means finding a compromise be-
tween discovering all features of the original function and
focusing on already found complex regions. Nentwich et al.
[5] further developed this algorithm, having in mind specif-
ically the application to surrogate models for phase equilib-
ria. The flowsheet in Fig. 3 shows the main steps involved in
the adaptive sampling algorithm from [9].

As can be seen in Fig. 3, the first step in the adaptive
sampling scheme after initialization is to create a set of can-
didate points, which contains input combinations that are
determined using Latin hypercube sampling. From this set,
the new samples are later chosen after quantification of how
promising the individual candidate points are by using the
surrogate model(s) of the current iteration, thus not using
expensive original model evaluations here. Care has to be
taken in choosing the number of candidate points. If there

are too few points considered, the most promising regions
might be missed due to sparse coverage of the input space,
while in the case that a high number of candidate points is
taken into account, clustering of new samples might occur.
As a compromise, the size of this candidate set was chosen
to be of the same size as the previous sample set. The set of
new candidates is created in every iteration.

For the existing set of samples and the candidate set the
nearest neighbor distance (NND) dj is calculated for all
candidate points xcand

j to all points in the sample set xsample
j

(see Eq. (3)).

dj ¼ min
n ˛ 1;...;Nf g

xcand
j � xsample

n

��� ���
2

(3)

Here N represents the number of samples in a given itera-
tion.

The space-filling objective is to maximize the nearest
neighbor distance. The exploitation criterion is based on the
estimation of prediction error. If Kriging surrogate models
are used, the prediction error can be estimated from the
surrogate model parameters directly. For other types of sur-
rogate models, the error of the current model at the candi-
date points is not available. Towards this goal, the so-called
jackknife variance is employed, as it showed promising
results in previous work [5]. The bootstrap method can also
be used as the variance estimation method, Nentwich et al.
[6] report similar results compared to the jackknife var-
iance.

First a surrogate model ŷ 0ð Þ is trained on the full sample
set X. To calculate the jackknife variance, the sample set X
is divided into NSS subsets, where the number of subsets NSS

is a hyperparameter of the algorithm. Then surrogate mod-
els ŷ �ið Þ are trained using reduced training sets with the ith
subset left out.

With this the jackknife variance at the jth candidate point
ŝ2

j can be calculated as

ŝ2
j ¼

XNSS

i¼1

1
N N � Nið Þ ~yji � ~yj

� �2
(4)
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Figure 2. Example of a
Latin Hypercube sam-
pling design.

Figure 3. Steps of applying the mixed adaptive sampling algorithm from [9].
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with

~yj ¼
XNSS

i¼1

N � NiPNSS

l¼1 N � Nl

~yij (5)

and

~yij ¼ Nŷ 0ð Þ xcand
j

� �
� N � Nið Þŷ �ið Þ xcand

j

� �
(6)

N denotes the total number of samples, while Ni refers to
the number of samples in subset i.

With both the explorative and the exploitative objective
defined, the overall quality criterion hj, which describes how
promising a candidate point is, can be evaluated as shown
in Eq. (7).

hj ¼
dj

max
j

dj
þ

ŝ2
j

max
j

ŝ2
j

(7)

The number of candidates niter that are added to the sam-
pling set in each iteration is chosen as a multiple, a of the
number of samples in that iteration N, see Eq. (8).

niter ¼ a N (8)

Nentwich et al. [5] extended this method to equilibrium
calculations. Here, hj is defined depending on the prediction
of the classification surrogate, which is used to distinguish
between the miscible and immiscible cases. hj is calculated
as shown in Eq. (9) for the case where the classification sur-
rogate model predicts only a single stable phase for candi-
date input xcand

j .

hj ¼
dj

max
j

dj
þ

ŝ2
class;j

max
j

ŝ2
class;j

(9)

Here ŝ2
class;j is the jackknife variance for the classification

surrogate. For the case of predicted immiscibility, hj is cal-
culated as

hj ¼
dj

max
j

dj
þ 1

2

ŝ2
class;j

max
j

ŝ2
class;j

þ 1
2nc

Xnc

i

ŝ2
regr;i;j

max
j

ŝ2
regr;i;j

(10)

ŝ2
regr;i;j denotes the jackknife variance of the regression

model of the ith component at the jth candidate point.

4 Case Study

The case study that is considered in this work is the process
of hydroformylation of 1-dodecene in a thermomorphic
solvent system (TMS). The details of this process, the mod-
els employed and the cost function for the optimization of
the flowsheet are described in the following.

4.1 Process Description

Hydroformylation means the reaction of CO and H2 with
an olefin to produce an aldehyde. The most well-known
example of such a reaction performed in industrial scale is
the Ruhrchemie-Rhone-Poulenc process for the production
of butanal. We here consider the reaction of 1-dodecene to
n-tridecanal as shown in Eq. (11). Besides the main reaction,
there are unwanted side reactions. These include the
reaction of 1-dodecene to one of the iso-dodecenes. To
improve the speed of reaction and to reduce the side reac-
tions, a selective catalyst is applied, here a homogeneous
Rh(acac)(CO)2 catalyst [10].

1-dodecene �!CO=H2
n-tridecanal (11)

The kinetics of this chemical reaction depend on the cata-
lyst concentration as well as on the concentration ci of the
dissolved gases carbon monoxide (CO) and hydrogen (H2)
and on temperature. This can be seen from the kinetic
equation of the main reaction [11]

r ¼
k1;0 Tð Þ c1-dodecene cH2

cCOccatalyst

1þ K1;1c1-dodecene þ K1;2cn-tridecanal þ K1;3cH2

(12)

Here, the reaction rate r is described as a function of the
temperature-dependent reaction rate constant k1,0(T) and
inhibition constants K1,j.

To minimize the loss of the rhodium-based catalyst,
which has a very high cost, the innovative concept of a ther-
momorphic solvent system [10] is used. The main idea is to
use specific solvents, in this case n-decane and dimethyl-
formamide (DMF), that result in a specific thermodynamic
behavior: good miscibility of all components at elevated
temperatures, and low miscibility (phase separation) at low
temperatures. This leads to the possibility to use a decanter
for separation of the products from the recycle stream that
contains the catalyst and unreacted feed, see Fig. 4.

The degrees of freedom when designing this process in-
clude the composition of the feed that contains 1-dodecene,
the solvents and the catalyst, the operating temperature and
pressure, as well as the reactor volume, and the composition
of the gas phase (ratio of CO/H2). In the decanter, the
operating temperature can also be chosen freely. To find the
best values for these parameters, a rigorous process optimi-
zation can be performed. The cost function is chosen as the
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Figure 4. Process flowsheet for the hydroformylation of
1-dodecene in a thermomorphic solvent system.
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production cost per ton of n-tridecanal produced, with
parameters taken from [12] and [13].

In this process, the liquid-liquid equilibrium in the
decanter and the gas-liquid equilibrium in the reactor play
a central role.

4.2 Thermodynamic Modeling and Surrogate
Models

The equation of state PC-SAFT [1] is chosen as it provides
accurate descriptions of the equilibria [10, 14]. In the mod-
els, some components are lumped together based on the
assumption that they show similar phase behaviors. This
leads to the consideration of a liquid phase that contains
four components (decane, DMF, 1-dodecene and n-trideca-
nal), and a gas phase with two components (H2 and CO).

For the isofugacity criterion PC-SAFT is used in this case
to compute the fugacity coefficient ji as a function of the
temperature T, the pressure p, and the molar composition xi

in each phase. The fugacity coefficient is calculated as a
function of the residual Helmholtz energy ares:

ln jið Þ ¼ ares þ
¶ares

¶xi
�
Xncomp

j¼1

xj
¶ares

¶xj

 !
þ Z � 1� ln Zð Þ

(16)

The compressibility factor Z is calculated by solving
the implicit density root problem. This iterative method,
together with the iterative solution for the equilibrium con-
ditions leads to a high computational effort for each equilib-
rium calculation.

To overcome this issue, the equilibrium calculations are
approximated by a surrogate model. The surrogate for the
LLE equilibrium calculations computes the miscibility,
encoded as a discrete binary variable, as well as the phase
distribution coefficients ki as functions of the mole fractions
of the liquid feed to the decanter and the temperature.

The GLE surrogates have as inputs the liquid phase com-
position and the temperature as well as the pressure and the
composition of the synthesis gas. The outputs are the solu-
bilities of CO and H2 in the liquid. We here present results
only for direct models where a classifier is employed in the
LLE computation for brevity. In the case
study, these surrogate models turned out
to be more reliable than indirect models.

The kind of surrogate model used has
a large influence on the performance of
the approximation. Several choices of
surrogate models have shown good per-
formance in previous work [15]. In this
work, artificial neural networks (ANN)
are considered for both regression and
classification problems.

In a pre-study the hyperparameters
shown in Tab. 1 were determined.

5 Results of the Application of the Sampling
Methods

In the following, the results of the application of Latin
hypercube sampling (purely explorative) and mixed adap-
tive sampling considering exploration and exploitation with
equal weight are presented, see Eq. (10). Both sampling
methods were applied five times as the generation of the
samples and the training of the models involves random
variables.

The performance of the sampling algorithms is measured
by the deviation over a large set of precomputed input out-
put pairs of PC-SAFT. For this set, flash calculations were
conducted on approximately 10 000 points for both the LLE
and the GLE. The following error metrics are considered.

RMSE ŷ xð Þð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

~ntestset

X~ntestset

i¼1

ŷregr x ið Þ� �
� y ið Þ

regr

� �2

vuut (17)

MAX ŷ xð Þð Þ ¼ max
i

ŷregr x ið Þ
� �

� y ið Þ
regr

��� ��� (18)

MisC ŷ xð Þð Þ ¼ 1
ntestset

Xntestset

i¼1

ŷclass x ið Þ
� �

� y ið Þ
class

��� ��� (19)

ŷregr denotes the prediction of the ith test set input x(i)

and y ið Þ
regr the value provided by PC-SAFT. Only inputs that

lie in the two-phase region are considered in the RMSE and
in the maximum absolute error MAX.

For classification surrogates the fraction of misclassified
points MisC is calculated by Eq. (19). yclass and ŷclass are
binary values. The resulting RMSE plot for the phase distri-
bution coefficient of the product tridecanal, ktridecanal, is
shown in Fig. 5. Additionally, the fraction of misclassified
points MisC and the RMSE for the hydrogen solubility in
the GLE is visualized.

The number of additional samples for each method is the
same, increasing by 20 % in every iteration, from initially 60
samples to 1110 samples. The test set error for the individu-
al components is shown in Tab. 2 for the regression surro-
gate models for the last iteration as a mean value over the
five runs of the method. MisC is 0.0305 for LHS and 0.0194
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Table 1. Hyperparameters of the surrogate models.

LLE regression LLE classification GLE regression

Surrogate model type ANN ANN ANN

Number of hidden layers 2 2 1

Number of nodes per layer 15 15 30

Training algorithm Levenberg-Marquardt [16]

Validation data 10 % of training dataset

Stopping criterion Validation error not decreasing for 6 epochs
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for mixed adaptive sampling. In general, the
adaptive sampling reduces the RMSE and MAX
errors to about 50 % compared to LHS sam-
pling.

The MAX error of the LLE regression is sig-
nificantly higher than the corresponding RMSE
for both methods. Obviously, the surrogate re-
sponse exhibits a complex behaviour for some
parts of the response surface while being almost
flat in others. The RMSE and MisC values indi-
cate a good average approximation over the
ranges of interest. To investigate whether the
surrogates are also suited for process optimiza-
tion, the minimization of the cost described in
Sect. 4.1 is performed using IPOPT [17] with a
multistart heuristic using six different initial
points to find the best local minima. This opti-
mization is applied using the surrogate models

from different iterations of the sampling procedure. The re-
sults are shown in Fig. 6.

At iteration 10, the adaptive sampling performs better
than LHS, but at iteration 15, the variability of the optimum
for the adaptive sampling method is still significant. While
the adaptive sampling leads to a better overall approxima-
tion of the equilibria, the behaviour near the optimum
introduces errors in the optimization. In order to further in-
vestigate whether the predicted optimum at 5175.86 $ t–1

that largely differs from the other values corresponsds to a
realistic operating point, the surrogate model outputs are
compared to PC-SAFT predictions at the different optima
for the mixed adaptive sampling method at iteration 5. The
results are shown in Tab. 3.

From the results in Tab. 3 it becomes clear that the surro-
gate models show relatively low deviations from PC-SAFT
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Figure 5. Test set errors of surrogate models trained on sample sets generated by applying LHS (orange) and mixed
adaptive sampling (green). Left hand side: RMSE of the phase distribution coefficient of tridecanal, middle: fraction
of misclassified points MisC, right hand side: RMSE of the solubility of hydrogen. Dots: results for five runs, lines: fit
line. Iterations refers to sequential sampling iterations.

Table 2. Test set errors of different sampling methods in the
last iteration of the sequential sampling method using 1110
samples for LLE and GLE regression surrogate outputs.

LHS LHS Mixed adaptive
sampling

RMSE MAX RMSE MAX

kdecane [–] 0.0050 0.1199 0.0025 0.0554

kDMF [–] 0.0035 0.0749 0.0017 0.0264

k1-dodecene [–] 0.0048 0.1143 0.0024 0.0483

ktridecanal [–] 0.0042 0.0910 0.0018 0.0303

Solubility H2 [mol L–1] 0.0107 0.0315 0.0058 0.0199

Solubility CO [mol L–1] 0.0182 0.0541 0.0099 0.0339

Figure 6. Optimized production cost using the surrogate models trained on
sample sets generated by applying LHS (orange) and mixed adaptive sampling
(green). The bar charts correspond to five different runs of the sampling and
surrogate computation methods and optimization for the resulting models.
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in all cases except for the outlier with a predicted operating
cost of 5175.86 $ t–1. This leads to the conclusion that this
optimum is not physically feasible. Therefore, for the goal
of process optimization, another approach is proposed that
favors samples close to the predicted optimum rather than
in regions of large variations of the original function.

6 Sampling for Optimization

The problem of optimizing an objective function that is
costly to evaluate has attracted much research effort over
the years. One approach to this problem is Bayesian optimi-
zation, see [18] for an early application. Here, the objective
function is evaluated at the sample points and a surrogate
model is used to predict the objective function between the
samples. Sampling is conducted by optimizing an acquisi-
tion function that depends on a surrogate model of the ob-
jective function. The assumption in Bayesian optimization
in its original form is that the objective function is described
directly by the surrogate model. This however is not the
case in chemical process optimization when submodels are
replaced by surrogates and the surrogates have internal
model variables as inputs. In other words, what we are ad-
dressing here is an optimization problem with a gray-box
model, in which the surrogate models can also be seen as
constraints that are added to the remaining, first-principles
based model that is part of the optimization problem.

The approach proposed in [19] extends the upper confi-
dence bound (UCB) function to gray-box models. The orig-
inal formulation of the acquisition function f UCB proposed
by Cox and John [20] is:

f UCB xð Þ ¼ ŷ xð Þ þ b
ffiffiffiffiffiffiffiffiffiffiffi
ŝ2 xð Þ

q
(20)

Here, ŷ denotes the surrogate prediction and ŝ2 the esti-
mated variance of the prediction. The scaling b is used to
address the exploration vs. exploitation trade-off. It is set to
a negative value in the case that the optimization involves
minimization. This acquisition function can be understood
as optimistically assuming that the expected surrogate error
leads to a better objective function value. Therefore, the

result of optimizing f UCB leads to promising new sampled
inputs.

This idea was extended in [19] to gray-box models. Here,
the sensitivity of the optimum to the deviation of the pre-
diction by the surrogate model, gi, is approximated by using
Lagrange multipliers. The resulting acquisition function
f UCB-GB can be represented as shown below:

f UCB-GB xð Þ ¼ f GB x; ŷ xð Þð Þ

þ b
Xnsurr

i

gij j
ffiffiffiffiffiffiffiffiffiffiffi
ŝ2

i xð Þ
q

þF xð Þ
(21)

f GB represents the first-principles based model equations,
which depend on optimization variables x as well as surro-
gate model outputs ŷ xð Þ. F(x) is a penalty term that is used
to generate multiple samples in an iteration. nsurr describes
the number of surrogate model outputs that are part of the
process model.

To optimize the gray-box acquisition function f UCB-GB

and to estimate the sensitivities gi from the Lagrange multi-
pliers lUCB-GB, the following constrained optimization prob-
lem is solved:

min
x;z

f GB x; zð Þ þ b
Xnsurr

i

gij j
ffiffiffiffiffiffiffiffiffiffiffi
ŝ2

i xð Þ
q

þF xð Þ

s:t: hðx; zÞ < 0

ŷðxÞ � z ¼ 0 lUCB-GB
��

(22)

The auxiliary decision variables z are constrained to the
surrogate model output by means of the Lagrange multi-
pliers lUCB-GB. h(x,z) denotes constraints that result from
the first-principles based model.

The optimization problem shown in Eq. (22) is solved
iteratively updating the sensitivities with the Lagrange mul-
tipliers. Further details can be found in [19].

This sampling method, denoted as UCB, is applied to the
case study described before with the b parameter set to
–1.96. The results of this sampling, training and optimiza-
tion procedure are shown in Fig. 7.

There is some inherent noise in these optimum values
due to the reinitialization of the ANN weights and bias
parameters in each iteration because the training procedure
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Table 3. Comparison of surrogate model predictions (marked with ∧ to PC-SAFT outputs for different sampling runs in
iteration 5 of the mixed adaptive sampling method, evaluated at the predicted process optima. The indices 1 to 4
denote the components decane, DMF, 1-dodecene and tridecanal.

Production
cost [$ t–1]

Phase distribution coefficients (LLE) [–] Solubilities (GLE) [mol L–1]

k̂1 k1 k̂2 k2 k̂3 k3 k̂4 k4 ĉH2 cH2 ĉCO cCO

6174.56 0.96 0.96 0.35 0.35 0.96 0.96 0.83 0.83 0.10 0.10 0.21 0.21

6200.35 0.97 0.97 0.41 0.40 0.97 0.97 0.87 0.87 0.10 0.10 0.21 0.21

6179.14 0.96 0.96 0.30 0.30 0.95 0.95 0.81 0.81 0.10 0.10 0.21 0.22

5175.86 0.77 0.83 0.00 0.06 0.75 0.81 0.40 0.45 0.00 0.00 0.36 0.36

6195.98 0.96 0.96 0.35 0.35 0.95 0.95 0.82 0.82 0.10 0.10 0.21 0.21
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incorporates a nonconvex optimization problem that is sus-
ceptible to local minima. In general, it can be seen that in
later iterations with a higher sample size the optimum is
predicted to be around 6175 $ t–1. As shown before, optima
of low surrogate approximation error are found in this pro-
duction cost range. Therefore, it can be assumed that the
true optimum lies there. For the UCB sampling, the devia-
tions in the predicted optimum are small after six iterations
(149 samples), so that the minimum cost is determined very
accurately already for a small number of samples (note that
the rigorous model is also not perfectly describing reality).

7 Conclusion and Outlook

Surrogate models are a suitable tool to reduce the computa-
tional effort in process simulation and optimization when
thermodynamic properties are computed by complex mod-
els that require iterative solutions of nonlinear equations.
Their application involves the choice of the model inputs
and outputs, which should incorporate as much knowledge
as possible like, e.g., the constraint of the molar balance
over the phases. A fundamental choice is between direct or
indirect representations. In our case, the direct representa-
tion turned out to provide a better accuracy.

We demonstrated that for the goal of achieving a uni-
formly high accuracy of the model, adaptive sampling
methods are preferable over space filling methods. How-
ever, this does not necessarily lead to models that are also
well suited to determine optimal designs and operating con-
ditions. For this, a new method that proposes candidates
with an improvement potential was proposed and demon-
strated to be efficient.

There is an interplay between the sampling strategy and
the computation or training of the surrogate models and
the choice or possibly also adaptation of their structure and

the training parameters. This was not investigated deeply
here; surrogate models of a fixed structure and a fixed train-
ing method were used. To investigate this interplay more
deeply is an interesting topic for further research.
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Symbols used

b [–] Weighting parameter
c [mol L–1] Concentration
d [–] Distance
f [–] Objective function
g [–] Sensitivity
h [–] Constraints from gray-box model
K [–; L mol–1] Distribution coefficient / inhibition

constant
k [L4mol–3s–1] Reaction rate constant
_n [mol s–1] Mole flow
n [–] Number
r [mol s–1] Reaction rate
x [–] Mole frac. sample inputs
y [–] Function output
ŷ [–] Surrogate prediction
~y [–] Jackknife pseudo value
~y [–] Mean jackknife pseudo value
Z [–] Compressibility factor
z [–] Auxiliary decision variables
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Figure 7. Result of the optimization of the production cost using surrogate models that were trained on sample sets generated
by applying mixed adaptive sampling (green) and UCB (purple). Left: full range, right: close-up near the optimum.
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Greek letters

a [–] Factor determining number of new
samples

h [–] Candidate criterion
ki [–] Phase distribution coefficient
l [–] Lagrange multiplier
ŝ2 [–] Estimated variance
j [–] Fugacity coefficient
F [–] Parallelization penalty

Sub- and Superscripts

(–0) No subset left out
cand Candidate
class Classification
comp Components
F Feed
GB Gray-box
I Phase 1
II Phase 2
iter Iteration
(–i) ith subset left out
regr Regression
sample Sample
SS Subset
surr Surrogate
UCB Upper confidence bound
UCB-GB Upper confidence bound extended to gray-box

models

Abbreviations

CFD Computational fluid dynamics
DMF Dimethylformamide
G Gas
GLE Gas liquid equilibrium
L Liquid
LLE Liquid liquid equilibrium
MAX Maximum error
MisC Fraction of misclassified points
NND Nearest neighbor distance
PC-SAFT Perturbed chain statistical associating fluid

theory
RMSE Root mean squared error
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