4,736 research outputs found

    Surrogate modeling a computational fluid dynamics-based wind turbine wake simulation using machine learning

    Get PDF
    The Wind Farm Layout Optimization problem involves finding the optimal positions for wind turbines on a wind farm site. Current Metahueristic based methods make use of a combination of turbine specifications and parameters, mathematical models and empirically produced power production equations to estimate the energy output of a real wind farm [15]. The overarching variable in any optimisation function is wind speed - this is what used to determine the power generated. Therefore, accurate predictions of wind speeds at specific points across the volume of the site are needed. In this paper, Computational Fluid Dynamics (CFD) was used to simulate a full scale rotating wind turbine blade with fluid (air) at various wind speeds flowing past the turbine. The wake effect can be observed and leads to decrease in wind speeds, as expected. Wind speed at specific x,y and z (3D) coordinates were sampled and used as input to common Machine Learning regression algorithms to create different surrogate models. This was needed as each individual CFD experiment takes approximately 8 hours to complete, so it is not feasible to continuously repeat these simulations inside a metaheuristic optimiser

    Surrogate modeling of RF circuit blocks

    Get PDF
    Surrogate models are a cost-effective replacement for expensive computer simulations in design space exploration. Literature has already demonstrated the feasibility of accurate surrogate models for single radio frequency (RF) and microwave devices. Within the European Marie Curie project O-MOORE-NICE! (Operational Model Order Reduction for Nanoscale IC Electronics) we aim to investigate the feasibility of the surrogate modeling approach for entire RF circuit blocks. This paper presents an overview about the surrogate model type selection problem for low noise amplifier modeling

    ooDACE toolbox: a flexible object-oriented Kriging implementation

    Get PDF
    When analyzing data from computationally expensive simulation codes, surrogate modeling methods are firmly established as facilitators for design space exploration, sensitivity analysis, visualization and optimization. Kriging is a popular surrogate modeling technique used for the Design and Analysis of Computer Experiments (DACE). Hence, the past decade Kriging has been the subject of extensive research and many extensions have been proposed, e.g., co-Kriging, stochastic Kriging, blind Kriging, etc. However, few Kriging implementations are publicly available and tailored towards scientists and engineers. Furthermore, no Kriging toolbox exists that unifies several Kriging flavors. This paper addresses this need by presenting an efficient object-oriented Kriging implementation and several Kriging extensions, providing a flexible and easily extendable framework to test and implement new Kriging flavors while reusing as much code as possible

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type

    Sequential optimization of strip bending process using multiquadric radial basis function surrogate models

    Get PDF
    Surrogate models are used within the sequential optimization strategy for forming processes. A sequential improvement (SI) scheme is used to refine the surrogate model in the optimal region. One of the popular surrogate modeling methods for SI is Kriging. However, the global response of Kriging models deteriorates in some cases due to local model refinement within SI. This may be problematic for multimodal optimization problems and for other applications where correct prediction of the global response is needed. In this paper the deteriorating global behavior of the Kriging surrogate modeling technique is shown for a model of a strip bending process. It is shown that a Radial Basis Function (RBF) surrogate model with Multiquadric (MQ) basis functions performs equally well in terms of optimization efficiency and better in terms of global predictive accuracy. The local point density is taken into account in the model formulatio

    Reliability Analysis Based on Surrogate Modeling Methods

    Get PDF
    Various surrogate modeling methods have been developed to generate approximate functions of expensive numerical simulations. They can be used in reliability analysis when integrated with a numerical reliability analysis method such as a first-order or second-order reliability analysis method (FORM/SORM), or Monte Carlo simulations (MCS). In this chapter, a few surrogate modeling methods are briefly reviewed. A reliability analysis approach using surrogate models based on radial basis functions (RBFs) and successive RBFs is presented. The RBF surrogate modeling method is a special type of interpolation method, as the model passes through all available sample points. Augmented RBFs are adopted to create approximate models of a limit state/performance function, before the failure probability can be computed using MCS. To improve model efficiency, a successive RBF (SRBF) surrogate modeling method is investigated. Several mathematical and practical engineering examples are solved. The failure probabilities computed using the SRBF surrogate modeling method are fairly accurate, when a reasonable sample size is used to create the surrogate models. The method based on augmented RBF surrogate models is useful for probabilistic analysis of practical problems, such as civil and mechanical engineering applications
    corecore