
Surrogate Modeling a Computational Fluid
Dynamics-based Wind Turbine Wake Simulation

using Machine Learning
Brett Wilson∗, Sarah Wakes†, Michael Mayo∗

∗Department of Computer Science
University of Waikato

Hamilton, New Zealand
bkw5@students.waikato.ac.nz, michael.mayo@waikato.ac.nz

†Centre for Materials Science and Technology
University of Otago

Dunedin, New Zealand
sarah.wakes@otago.ac.nz

Abstract—The wind farm layout optimisation problem involves
finding the optimal locations for wind turbines on a wind farm
site in order to minimise the so-called “wake effect”. The wake
effect is the effect of turbulence on wind velocity produced by
a turbine’s rotating blades. This results in reduction in power
production and increased fatigue in downstream turbines inside
the wake. This paper uses wind velocity data produced from
expensive Computational Fluid Dynamics (CFD) simulations of
a rotating wind turbine at various incoming wind speeds to
generate ground truth wake data, and explores the ability of
machine learning algorithms to create surrogate models for
predicting the reduced-velocity wind speeds inside a wake. In
an extensive evaluation, we show that (i) given data from a CFD
simulation, we can construct a model to interpolate wind velocity
inside the wake at any arbitrary 3D point with high levels of
accuracy; and (ii) given data from several CFD simulations (the
training data) we can also accurately predict wind velocities in
the wake of CFD simulations that we have not yet run (i.e. we can
extrapolate to simulations where the incoming wind speeds are
different to those in the training data). The net effect of these
findings are that they pave the way towards the construction
of novel and improved wake models for wind turbines, which
in turn can be incorporated into existing algorithms for solving
wind farm layout optimisation problems more accurately.

Index Terms—surrogate model, wind turbine, wind farm layout
optimisation problem, machine learning, computational fluid
dynamics

I. INTRODUCTION

The Wind Farm Layout Optimization problem involves
finding the optimal positions for wind turbines on a wind
farm site. Current Metahueristic based methods make use of
a combination of turbine specifications and parameters, math-
ematical models and empirically produced power production
equations to estimate the energy output of a real wind farm
[15]. The overarching variable in any optimisation function
is wind speed - this is what used to determine the power
generated. Therefore, accurate predictions of wind speeds at
specific points across the volume of the site are needed. In
this paper, Computational Fluid Dynamics (CFD) was used

to simulate a full scale rotating wind turbine blade with fluid
(air) at various wind speeds flowing past the turbine. The wake
effect can be observed and leads to decrease in wind speeds, as
expected. Wind speed at specific x, y and z (3D) coordinates
were sampled and used as input to common Machine Learning
regression algorithms to create different surrogate models.
This was needed as each individual CFD experiment takes
approximately 8 hours to complete, so it is not feasible to
continuously repeat these simulations inside a metaheuristic
optimiser.

Several surrogate models that use common Machine Learn-
ing regression algorithms were created and compared. We
show that these surrogate models can accurately predict the
wind velocity at any arbitrary point inside the wake. We further
show that the surrogate models can also be used to predict
wind velocities in wakes produced by novel wind speeds and
still make accurate predictions, potentially avoiding the need
to run extremely computation expensive CFD simulations for
all the required wind speeds, saving significant time.

II. BACKGROUND

A. Wind Farm Layout Optimisation problem

When constructing wind farms, each turbine comes at a
large financial burden to the investors. Each turbine costs
roughly 1-2 million US dollars per MW of nameplate capacity
and also carries regular maintenance costs. Therefore, it is
clear that optimised placements of each and every turbine
is crucial and well worth the research and effort. A key
problem that has been identified is the significant negative
impact that wake effects of the turbines can have on wind
speeds, turbulence and overall efficiency of the wind farm.
Generally, inside the wake generated by the wind passing
the rotating blades of a turbine the wind is more turbulent
and more importantly, has a decreased velocity which leads
to less power being generated by any other turbines that are
within the wake. Due to this effect being the main reason

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/156952696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


x

r1
rr

u0 m/s

uj m/s

Fig. 1. Depiction of the wake effect (reproduced from [15]).

for decrease in efficiency of wind farms, the wind farm
layout optimisation problems is focused on minimising this
factor. Current methods, such as the Jensen model, consist
of attempting to accurately estimate the wake effects (using
mathematical models) and then use power generated as the
metric to optimise. Therefore, power generated is maximised,
which is the same thing as the wake effect being minimised.

B. Jensen model

The Jensen model is a mathematical model that attempts
to estimate the far wake effect of a wind turbine and the
overall velocity deficits caused by these far wakes [9] [10]. The
model is a reasonably computationally inexpensive and simple
approach for assessing wake interactions for two dimensional
(i.e. hub height assumed to be equal for all turbines) layouts
where the set of wind speeds and wind directions are given
as parameters and assumed to be constant. Although it was
originally devised in the mid 1980s, the Jensen model is still
the most widely used mathematical model in the literature.

Figure 1 demonstrates a possible scenario that the Jensen
model will produce. The wind flow is from left to right at
speed u0 and hits a turbine depicted by the black bolded
rectangle on left. The exact parameters of the turbine are
application specific and must be given as arguments in the
algorithm - examples of turbine parameters supported by the
Jensen model are the rotor diameter, d, and hub height, z,
where each turbine is assumed to have the same values for
these variables. As the wind flows past the turbine, the rotating
blades cause the velocity of the wind to reduce. At a distance
x meters downstream on the x-axis, the wind speed is uj m/s,
which will be less than the original, unaffected and constant
wind speed, u0. Figure 1 also demonstrates how the wake
radius increases linearly in size with distance (causing a cone
shape to occur). At x meters downstream on the x-axis, the
wakes radius, r1 is larger the radius of the rotor, rr. The Jensen
model can produce velocity deficits at given points inside the
wake of a turbine, this information is then used to calculate the

(potentially) altered wind speeds at each turbine, i.e. for each
turbine in the wind farm, it is possible to calculate the total
velocity deficit caused by the wake effects of other surrounding
turbines. The predicted wind speeds at each turbine can then
be used to estimate the power production of each turbine and
therefore the overall power production of the wind farm. The
optimization objective then becomes to maximize the total
power production of the wind farm.

The main disadvantage of the Jensen model is that the
accuracy of the mathematical model is still not clear. [6] com-
pared three different mathematical wake models (including the
Jensen model) with power production data from Horns Rev
and Lillgrund offshore wind farms. They concluded that the
models were robust and accurate, excluding single rows with
narrow sectors. However, [2] highlighted physical deficiencies
in the ability of the Jensen model to accurately predict the
wake velocities. The main problem reported was that the
expansion factor was not consistently accurate. [3] did a
comprehensive comparison of six different mathematical wake
models (including the Jensen model) with measurements from
the Vindeby wind farm and showed that the mean absolute
error was 15%, with a root-mean-square-error of 0.88 m/s,
both of which are high error rates. The Jensen model also
relies on many heavy assumptions, one of which is that the
wake expands linearly and in a simple manner. The Jensen
model is also a 2D model and therefore does not take into
account the change in wind direction and wind rotation effects
that occur as the wind flows past the rotating turbine blades in
its basic form. For a more detailed explanation of the Jensen
model, including explanations and examples of the net velocity
deficit for each turbine, possible power functions and overall
optimization functions, see [15]

C. Computational Fluid Dynamics simulations of wind turbine
wakes

Computational Fluid Dynamics (CFD) is a branch of fluid
mechanics that uses the Navier-Stokes equations, numerical
analysis and data structures to solve fluid flow problems. An
example of a fluid flow problem would be air flowing past a
rotating wind turbine and the effects on the wind because of
this, e.g. the wake effect or turbulence generated, the decrease
in wind velocity, the change in wind direction etc. Results can
be validated by comparing results with a wind tunnel and even
full-scale testing such as flight tests or measurements from
a wind turbine farm. Due to ever increasing computational
power and the ability to easily parallelise the computation
process, even large scale CFD simulations are possible.

However, in the case of simulating a wind farm, due to there
being multiple wind turbines in which each turbine is a large
object, with rotating blades which are of a complex shape,
the run-times of the simulation quickly become infeasible due
to the large mesh requirements.. Other possible alternative
methods of modelling a wind turbine have been presented
such as the actuator turbine model. The actuator turbine model
predicts blade forces using empirically produced mathematical
equations. The blade forces are predicted using these equations



Fig. 2. The geometry of the Actuator disc (left) and Actuator Line (right)
are shown [17].

depending on the local fluid (air) velocity at many specific
points in each actuator element (run-time and accuracy in-
crease as you calculate more points). These calculated forces
are then used as input to a CFD simulation of the turbine field
thereby reducing mesh requirements [24].

There are many different implementations of the actuator
turbine model, here we will briefly explain two of the more
commonly used implementations, as well as the full turbine
blade model. Figure 2 shows the main difference between the
two methods (being the area in which actuator elements are
present) [17].

1) Actuator Disc Model: The Actuator Disc Model simu-
lates the rotating turbines as a thin disc within the flow that
imposes forces on the fluid (air) as it flows past the disc [11].
This disc occupies the swept area of the blades. Usually, the
rotor swept area will be divided into many more elements
relative to surrounding areas of the geometry. This means that
calculations and equations will be solved with more accuracy
around the disc region compared with regions further away
from the disc, which generally will contain less points of
calculation, with the intention of saving computation time.

Some implementations of the Actuator Disc Model apply
both thrust and tangential forces, while others just apply basic
thrust forces. The Actuator Disc Model which only applies
basic thrust forces is based on the momentum theory of
propellers. The forces are uniformly distributed over the disc
region and calculated using a simple equation which takes into
account thrust force, density, velocity of the wind at the centre
of the rotor disc, area of the rotor swept area (the disc area) and
the thrust coefficient. The model does not take into account
the rotation in the flow produced by the blades, which is less
than ideal. When the Actuator Disc Model is implemented
where both thrust and tangential force are taken into account,
more realistic results can be calculated [1]. It is implemented
by taking into account both the lift and drag of the blades,
called the lift and drag coefficients, which can be calculated
empirically and are often included in official descriptions of

turbine blade models. Chord length is also taken into account,
among other variables. For a full description and comparison
of the two different implementations of the Actuator Disc
Model, see [13].

Similarly to the Jensen model, the Actuator Disc Model
does not simulate near wakes generated by turbines very well.
This is due to the fact that it does not capture tip vortices -
which are created by wind hitting the rotating blades, since
blades are purposely not part of the geometry, to decrease
complexity and runtime, this factor cannot be simulated very
well.

2) Actuator Line Model: The Actuator Line Model simu-
lates the wind turbine blades as a set of blade elements [21].
As mentioned earlier, real data can be used to calculate the lift
and drag of each blade element and then applied as body forces
to the flow. In other words, a simple geometry can be created
that uses mathematical equations to simulate the real blade
geometry - the Actuator Line Model does not simulate the
full geometry of blades. The geometry of the turbine is created
by emulating the nacelle, hub and ground of a specified wind
turbine. The blades are defined as a series of points, in which
each point is its own actuator element. Once you define one
blade element, you can easily use a rotation matrix to create
the other blades in the correct position that they should be.
During the calculation, you can emulate rotation of the blades
by moving the blade elements equally around the correct axis
by an appropriate amount depending the expected rotational
velocity of the blades, given the wind speed.

Like the Actuator Disc Model, the Actuator Line Model is
recorded to have accurate results when results are compared
with a wind tunnel set-up. However, it still has it trade-offs:
each blade element is only an emulation of a real blade
and mathematical equations are still used to estimate the
blades effects. Therefore, the only major difference between
the Actuator Line Model and the Actuator Disc Model is the
construction of the geometry - either a thin disc region is used
to emulate rotating blades, or several rotating blade elements
are used instead. Readers are referred to both [16] and [7] for
a more detailed explanation of the Actuator Line Model, as
well as results from an implementation of the model. Both
these authors use tabulated airfoil data to calculate the blade
variables (lift and drag).

3) Full Blade Model: The obvious alternative to using an
actuator turbine model is to use a full-blown wind turbine
blade model, that is based from real specifications of a partic-
ular wind turbine. In terms of CFD simulations, assuming the
model that is created is accurate, this method represents the
most realistic way in which to model the turbine blades and
therefore should lead to the most accurate results. This requires
far more computational power and leads to significantly higher
runtime. Therefore, it is not feasible to continuously redo these
simulations, which, for instance, would be needed if you are
trying to evaluate newly generated wind farm layouts during
an iteration of an optimization algorithm. In this paper, we
use a proper blade model and then apply Machine Learning
algorithms to create surrogate models that can accurately



predict wind speeds inside a wake. This means that the
simulations do not need to be redone for each new layout,
but instead the surrogate model can be used. The upcoming
sections describe our methods in more detail.

D. Surrogate models based on machine learning

Many real world optimisation problems are very computa-
tionally expensive and standard metaheuristic algorithms are
generally only effective for problems on a much smaller scale.
Real world problems are often high dimensional and fitness
functions that are developed can take several hours or even
days for just a single evaluation [8]. Therefore, there has been
an increase in research aimed at trying to mitigate the runtimes
of large scale expensive optimisation problems. The use of
surrogate models to assist metaheuristic algorithms, namely,
“surrogate assisted metaheuristic algorithms”, has received
particularly high attention over recent years. Some researchers
have developed solutions that involve using surrogate models
for fitness approximation, to replace the actual expensive
fitness function, either partially or completely [20]. It has been
shown that these surrogate assisted metaheuristic methods
are able to achieve competitive results while using a far
less computational power and have lower runtimes. Machine
learning is one such way to develop surrogate models, standard
regression algorithms can be used to predict fitness function
outcomes or variable values at different stages of the evalua-
tion. For example, [22] created a machine learning framework
to predict the heating and cooling load of buildings, i.e.
the energy performance of buildings. Eight variables (relative
compactness, surface area, wall area, roof area, overall height,
orientation, glazing area, glazing area distribution) are used
as input (features) to standard linear regression and also the
more complex, random forest algorithms. They showed that,
with use of the correctly weighted variables and data, it
was possible to predict the energy performance of residential
buildings with low mean absolute error (MAE). In this paper,
we also are able to use surrogate models created by machine
learning algorithms to predict wind velocities at specific 3D
points with low MAE.

III. DATASET CONSTRUCTION

The blade used in this paper is similar in size and shape to a
GE 1.5XLE turbine [12] but not identical. The total length of
the blade is 42.3 meters and has a standard cylindrical shape
with three key airfoil designs. Airfoil S818[18] defines the
root, airfoil S825[19] defines the body and S826[19] defines
the tip - the pitch angle at the tip is 4 degrees.

1) Geometry and Meshing: The software used was ANSYS
Fluent and Workbench 18.0. ANSYS Fluent uses Compu-
tational Fluid Dynamics to simulate fluid flows, such as
air/wind. This commercial software is considered the bench-
mark software for CFD calculations and has been used in
both Academia and Industry for many years. Entire planes,
helicopters and ship hulls can even be simulated, as well as
effects of wind on fast moving racing cars and so on. The
geometry for the simulation, which contains any objects to be

Fig. 3. The geometry of the GE 1.5XLE turbine blade model. The turbine
blades are coloured in green, the wind flows from the inlet (blue shaded
region) in the positive x direction and is shown as orange lines. Note that
only a few lines are shown, the real simulation contains many more points.
The cone extends 1000m along the x-axis

used in the simulation and also the domain in which the objects
are within, is created in ANSYS DesignModeller. Figure 3
shows the final geometry, the turbine blade was enclosed inside
a cone like domain, with the entire geometry extending 1000m,
with the blade located at (90, 0, 0). Fluid (air) flows at the
starting wind speed from the inlet or bottom of the cone, the
centre of the inlet is located at (0, 0, 0).

Once the geometry of the blade has been created or im-
ported, the shape and fineness of the mesh must decided.
Meshing is the process of splitting flow domains into smaller
sub-domains. Usually, these sub-domains are just simple 2D
or 3D shapes, here simple 3D shapes are used. The reason for
this splitting is because the partial differential equations that
govern fluid flow and heat transfer are not usually possible
to implement analytically. To get around this, the governing
equations are discretised and solved inside each sub-domain.
It is not hard to see that the more of these sub-domains are
present, the more accurate the results will be, but also this
means solving more equations which leads to longer runtimes.
Here, the total mesh element count was 1.75 million, with
the mesh around the turbine blade being far finer to increase
accuracy of the effect the rotating blade has on the wind - the
most important part of the experiment.

2) Experiment settings and parameters: ANSYS Fluent is
used to set up the experiment type and parameters and run
the experiment. A total of 8 experiments were run, each
experiment had differing wind speeds ranging from 5.5 m/s to
17.5 m/s (these values fall within the turbines expected range),
see Tables I and VI for a full list of the wind speeds used.
SST K-omega was used as the viscous model. To create the
rotation of the blade, a frame motion was used. The angular
velocity of the blade was set to its optimal value based from
the wind speed in any particular experiment, as defined in
[14]. For instance, when the starting wind speed was set to



11.5, the rotational velocity, ω, was calculated to be 1.09.
For a full list of the wind speeds and rotational velocities
see Tables I and VI. To set the starting wind speed, its source
and direction, a boundary condition was used. The fluid (air)
velocity was set at the inlet to be one of the starting values
described earlier and flows in the positive x direction. The
blade is defined as a wall in ANSYS fluent - which means fluid
cannot flow right through it. Once the starting variables have
been assigned the solution methods must also be chosen. These
methods determine how the experiment is run and iterated.
For instance, it is possible to stop the experiment early if
ANSYS determines that it has converged. You can change the
convergence threshold settings so that the experiment does not
end prematurely. Here, the convergence residuals were all set
to 1× 10−6 - meaning that early stoppage is very unlikely.
The experiment was initialized from the inlet (standard) and
the number of iterations was set to 2500.

3) Sampling experiment results: Once the experiment had
completed, ANSYS CFD-Post was used to process the results.
To export the velocities, a streamline was used, which is a
standard way to display and export specific variables that are
altered throughout the simulation. Here velocity in stationary
frame is the chosen variable to be exported, velocity in frame
is the absolute velocity of the wind at a given point in the
wake. When using a streamline, the amount of sampled points
and method of sampling can be chosen. Here, the the amount
of sampled points was set to 100,000 (maximum possible in
CFD-Post) and sampling method was set to equally spaced.
The resulting exported data contained 2.3 million datums,
where one line contains the velocity in stn frame, x, y and
z coordinates. Any datums that are at a location in front of
the blade were removed. The wind speed here will just be the
starting speeds since the wind is yet to hit the rotating blade,
so these datums are not needed, this area is the area between
the turbine and the inlet, as can be seen in Figure 3.

The remaining datums are then reduced by dividing the
geometry into 10x10x10 cells and selecting 100 datums per
cell, generating roughly 72,800 examples. 100,000 examples
are expected, however, not every cell contains 100 datums,
Tables III and VII give exact counts. The process was repeated
for each separate simulation at different wind speeds. When
reading the wind velocities values in Tables III and VII it may
seem that the wind speed is not really changed compared to the
starting wind speed. Figure 4 gives a more accurate depiction
of the significant variance in wind velocities at different points.

IV. MACHINE LEARNING EXPERIMENTS

Fundamentally, what we are trying to do is accurately
predict wind velocities inside the wake created by a rotat-
ing turbine. We completed advanced CFD simulations which
computed velocities inside the wake, but it is not feasible to
rerun these simulations on a regular basis inside an optimiser
as each one takes roughly 8 hours to complete. Therefore, we
now use Machine Learning to create surrogate models that
can be used to predict velocities inside the wake effect of this
particular turbine with good accuracy.

Wind Velocity ω TSR
5.5 0.521 4.189
8.5 0.805 4.189
11.5 (rated) 1.090 4.189
14.5 1.090 3.322
17.5 1.090 2.753

TABLE I
WIND SPEEDS, OPTIMAL ROTATIONAL FREQUENCIES (ω) AND TIP SPEED

RATIOS (TSRS) FOR THE FIVE CFD SIMULATIONS THAT WERE RUN. ω
AND TSR VALUES ARE BASED ON FORMULAS GIVEN IN EQUATIONS 38
AND 39 OF [14] FOR A THREE-BLADED TURBINE WITH ROTOR RADIUS

44.2 METERS.

Features Description
w Wind velocity outside the wake.
x, y, z Position relative to turbine hub inside

wake in Cartesian coordinates.
r, θ, φ Position relative to turbine hub inside

wake in spherical coordinates.
1
x
, x2, 1

x2 ,
1
y
, y2, 1

z
, z2,

xy, yz, xz

Non-linear transformations of the
Cartesian coordinates.

w′ Wind velocity inside the wake (the
class variable).

TABLE II
FEATURES USED TO CONSTRUCT THE DATASETS.

Dataset Num. examples w′

D(5.5) 72,785 5.48±0.118 m/s
D(8.5) 72,804 8.47±0.178 m/s
D(11.5) 72,794 11.45±0.246 m/s
D(14.5) 72,824 14.46±0.251 m/s
D(17.5) 72,781 17.46±0.26 m/s
D(all) 363,988 11.46±4.24 m/s

TABLE III
DATASETS CONSTRUCTED FOR THE EXPERIMENT FROM THE CFD

SIMULATION RESULTS. MEAN AND STANDARD DEVIATION ARE GIVEN FOR
THE w′ VALUES BUT THE DISTRIBUTION IS NOT NORMAL: SEE FIGURE 4

Distribution of w' values in D(all)

w'

lo
g 

fr
eq

ue
nc

y

4 6 8 10 12 14 16 18

0
2

4
6

8
10

14

Fig. 4. Log frequency histogram of w′ values in D(all), illustrating the
skew.



Algorithm Description
Mean Simple algorithm predicting the mean wind velocity

based on the training data.
LR Standard linear regression augmented with the M5′

attribute selection and the Akaike criterion for model
selection.

M5′ Decision tree with linear regression models at the
leaves [23].

RF Random forest ensemble of 100 decision trees [4].
MLP Standard multilayer perception trained using BGFS

to minimise squared loss with a quadratic
regularisation penalty, used in third experiment only.

TABLE IV
MACHINE LEARNING ALGORITHMS USED IN THE EXPERIMENTS. ALL

ALGORITHM IMPLEMENTATIONS ARE AVAILABLE IN WEKA 3.8.0 [5] AND
ALL PARAMETER SETTINGS ARE DEFAULTS.

w′ = −1.1412
−0.001× x
−0.0192× z
+0.9981× w
−5.3146× 1

x
+40.1374× 1

x2

+0.0001× 1
y

−0.0001× z2

+0.2117× 1
z

+0.0014× r
+0.1921× θ
−0.0061× φ

Fig. 5. Example of a linear model trained on D(all) using linear regression.
The model shows that the non-linear transformations of x,y and z are useful,
especially 1

x2 .

A. Initial evaluation of regression algorithms

We ran our data through four different commonly used
regression algorithms inside the WEKA framework [5]. As
stated earlier, each instance of data has the x, y and z
coordinates and also the objective or class to predict, which is
velocity in stn frame. In other words, we are trying to predict
the velocity at a specific 3D point. The algorithms used were:
Mean, LR, M5 and RandomForest (RF), see Table IV for more
details. 10x10-fold cross validation experiments were run for
each algorithm and each dataset. Results show that more com-
plex models like RF produced the most accurate wind velocity
predictions, with the mean absolute error (MAE) being 0.0118
m/s compared with the baseline algorithm, Mean, which had a
MAE of 0.7160 m/s. Overall, we show that complex Machine
Learning algorithms can give good wind velocity predictions
based from CFD simulation results. These initial experiments
were promising as we were able to show proof of concept
that surrogate models can be used to accurately predict wind
velocities when compared to advanced CFD simulations. See
Table V and Figure 6 for full results details.

B. Generalisation of the models to novel wind speeds

Given these initial promising results, we ran a further
experiment to see if we could predict wind velocities at certain

10.0

10.5

11.0

11.5

200 400 600 800

−60

−50

−40

−30

−20

−10

0

x

z

Fig. 6. Predictions made by the random forests classifier after being trained
on the D(11.5) dataset. Both scales are in meters. Predictions were made
by setting y = 0 and dividing the x ∈ [10, 910] vs. z ∈ [−60, 0] subplane
into a grid with spacing 5m between grid points. A prediction was made at
each grid point. This figure shows only one half of the wake; the wake where
z > 0 is assumed to be a mirror image of z < 0.

points with novel wind speeds, i.e. simulations at starting
wind speeds that have not been run. The ability to predict
velocities at given points accurately even if a CFD simulation
has not been run with that starting wind speed is useful, as
this means that these CFD experiments do not actually need
to be completed if the error is acceptably low. We used the
model trained on the D(All) dataset - a dataset which is the
concatenation of all of the five initial datasets, to predict wind
velocities given starting wind speeds of: 7, 13 and 19 m/s,
see Tables VI and VII for wind speeds, rotational velocities,
TSRs and number of examples in each dataset. Results show
that linear models, in this case LR, generalise the best, with
the MAE being 0.1954 m/s compared to the other algorithms
which have MAEs of 1.1442 or higher. See Table VIII and
Figure 7 for full details.

C. Further generalisation experiments non-linear models

Given that linear models generalise the best, we explored
ways in which to further reduce the error rate of these top per-
forming algorithms. A simple way to do this is add non-linear
features, this was already done in the original experiments as
described in Table II. Figure 5 shows an example of a linear
model that was trained on D(all), non-linear transformations
of x, y and z had a noteworthy weight, but 1

x2 had the most
significant impact. Interestingly, this feature is also present
heavily in the Jensen model and other mathematical models.

Another, more complex option involves learning a neural
network and gradually add hidden nodes. Linear regression is
analogous to a neural network with no hidden nodes and a
single output with no activation function, so learning a more
complex neural network should lead to better results. Here
we used a Multilayer Perceptron inside the Weka framework
(MLPRegressor) with gradually increasing numbers of hidden



Dataset Mean LR M5′ RF
D(5.5) 0.0743±0.0009 0.0466±0.0005 0.0054±0.0004 0.0033±0.0002
D(8.5) 0.1139±0.0014 0.0708±0.0009 0.0086±0.0009 0.0050±0.0002
D(11.5) 0.1557±0.0020) 0.0963±0.0013 0.0114±0.0010 0.0068±0.0003
D(14.5) 0.1629±0.0020 0.0978±0.0012 0.0169±0.0041 0.0080±0.0004
D(17.5) 0.1660±0.0021 0.0992±0.0015 0.0160±0.0029 0.0089±0.0005
D(All) 3.6233±0.0114 0.0752±0.0005 0.0714±0.0008 0.0385±0.0009
Average 0.7160 0.0810 0.0216 0.0118

TABLE V
MEAN ABSOLUTE ERROR (MAE) IN M/S OF THE WIND VELOCITIES PREDICTED BY THE FOUR MACHINE LEARNING ALGORITHMS AFTER A 10×10-FOLD

CROSS VALIDATION EXPERIMENT.

Wind Velocity ω TSR
7 0.663 4.189
13 1.090 3.705
19 1.090 2.535

TABLE VI
WIND SPEEDS, OPTIMAL ROTATIONAL FREQUENCIES (ω) AND TIP SPEED
RATIOS (TSRS) FOR THE THREE ADDITIONAL CFD SIMULATIONS THAT

WERE RUN.

Dataset Num. examples w′

D(7) 69,613 7.132±0.499
D(13) 72,221 13.123±0.639
D(19) 72,770 18.957±0.269

TABLE VII
ADDITIONAL DATASETS CONSTRUCTED FOR THE SECOND EXPERIMENT.

nodes starting from n = 2 and doubling in amount up to
n = 64. Results show that the MAE is lowest with n = 32 at
0.1749 m/s, which is also an improvement over standard LR,
see Table IX and Figure 8 for full results.

V. CONCLUSION

The Wind Farm Layout Optimisation problem has been
approached from many different angles and involves vari-
ous interacting variables and assumptions. However, when
predicting the efficiency of a wind turbine, wind speed is
the overarching variable that is used to estimate the power
production of each individual turbine and therefore the wind
farm as a whole. Here, we have shown that a combination
of wind velocity data produced from CFD simulations and
Machine Learning algorithms can be used to accurately predict
wind speeds with an acceptably low MAE. Predictably, the
more advanced Machine Learning algorithm (RF) performed
the best during the initial evaluation of the CFD data. However,
linear models generalised the best for novel wind speeds
and use of a neural network (MLP) can drive the error rate
down even further. This paper only explored wind velocity
predictions on a single rotating turbine and therefore the
multiple wake effect was not seen or addressed. Future work
may try to predict wind speeds when multiple interacting
turbines are present. The actuator disc or line method would
be more appropriate for simulating multiple turbines due to
it using significantly less resources and reduced runtimes.
CFD simulations and surrogate models may also be applied to
the efficient global wind turbine layout optimization problem.
Overall, we have shown that it is feasible to create models

17.6

17.8

18.0

18.2

18.4

18.6

18.8

19.0

200 400 600 800

−60

−50

−40

−30

−20

−10

0

x

z

Fig. 7. Predictions made by linear regression for a wind speed of 19 m/s
after being trained on the D(all) dataset. Image was produced in the same
way as Figure 6.

17.0

17.5

18.0

18.5

19.0

200 400 600 800

−60

−50

−40

−30

−20

−10

0

x

z

Fig. 8. Predictions made by a multilayer perceptron with 32 hidden nodes
for a wind speed of 19 m/s after being trained on the D(all) dataset.



Test Dataset Mean LR M5′ RF
D(7) 4.3326 0.2696 0.2698 1.3946
D(13) 1.6586 0.2337 1.6633 1.4461
D(19) 7.4923 0.0829 1.4995 1.5131
Average 4.4945 0.1954 1.1442 1.4513

TABLE VIII
MEAN ABSOLUTE ERROR (MAE) IN M/S OF THE WIND VELOCITIES PREDICTED BY THE FOUR MACHINE LEARNING ALGORITHMS AFTER BEING TRAINED

ON D(All) AND TESTED ON THE ADDITIONAL DATASETS.

Test Dataset n = 2 n = 4 n = 8 n = 16 n = 32 n = 64
D(7) 0.2501 0.2428 0.2735 0.2423 0.2394 0.2406
D(13) 0.2366 0.2097 0.2356 0.2010 0.1959 0.2002
D(19) 0.0850 0.1269 0.2477 0.1041 0.0895 0.0994
Average 0.1906 0.1940 0.2523 0.1825 0.1749 0.1801

TABLE IX
MEAN ABSOLUTE ERROR (MAE) IN M/S OF THE WIND VELOCITIES PREDICTED BY AN MULTI-LAYER PERCEPTRON WITH n HIDDEN NODES TRAINED ON

D(All) AND TESTED ON THE ADDITIONAL DATASETS.

using Machine Learning algorithms to replace full expensive
CFD simulations, but more work is needed.

REFERENCES

[1] I. Ammara, C. Leclerc, C. Masson, et al. A viscous three-dimensional
differential/actuator-disk method for the aerodynamic analysis of wind
farms. Transactions-American Society of Mechanical Engineers Journal
of Solar Energy Engineering, 124(4):345–356, 2002.

[2] S. J. Andersen, J. N. Sørensen, S. Ivanell, and R. F. Mikkelsen.
Comparison of engineering wake models with CFD simulations. In
Journal of physics: Conference series, volume 524, page 012161. IOP
Publishing, 2014.

[3] R. Barthelmie, G. Larsen, S. Frandsen, L. Folkerts, K. Rados, S. Pryor,
B. Lange, and G. Schepers. Comparison of wake model simulations
with offshore wind turbine wake profiles measured by sodar. Journal of
atmospheric and oceanic technology, 23(7):888–901, 2006.

[4] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[5] E. Frank, M. Hall, and I. Witten. The WEKA Workbench. Online

Appendix for “Data Mining: Practical Machine Learning Tools and
Techniques”. Morgan Kaufmann, 4th edition, 2016.

[6] M. Gaumond, P.-E. Réthoré, A. Bechmann, S. Ott, G. C. Larsen,
A. Pena Diaz, and K. Kurt. Benchmarking of wind turbine wake models
in large offshore windfarms. Proceedings of the science of making torque
from wind, pages 9–11, 2012.

[7] S. Ivanell, J. N. Sørensen, R. Mikkelsen, and D. Henningson. Analysis
of numerically generated wake structures. Wind Energy, 12(1):63–80,
2009.

[8] T. Jansson, L. Nilsson, and M. Redhe. Using surrogate models and re-
sponse surfaces in structural optimization–with application to crashwor-
thiness design and sheet metal forming. Structural and Multidisciplinary
Optimization, 25(2):129–140, 2003.

[9] N. Jensen. A note on wind generator interaction. Technical report, Risø
DTU National Laboratory for Sustainable Energy, 1983.

[10] I. Katic, J. Høstrup, and N. Jensen. A simple model for cluster
efficiency. In Proc. Europe and Wind Energy Association Conference
and Exhibition, 1986.

[11] R. Mikkelsen. Actuator disc methods applied to wind turbines. Technical
University of Denmark, 2003.

[12] M. Patel. GE Wind Components: 1.5 XLE ESS Dimensions, 2009.
[13] F. Porté-Agel, H. Lu, and Y.-T. Wu. A large-eddy simulation framework

for wind energy applications. In The fifth international symposium on
computational wind engineering, page 21, 2010.

[14] M. Ragheb and A. M. Ragheb. Wind turbines theory – the Betz equation
and optimal rotor tip speed ratio. In R. Carriveau, editor, Fundamental
and Advanced Topics in Wind Power, chapter 2. InTech, 2011.

[15] M. Samorani. The Wind Farm Layout Optimization Problem, pages 21–
38. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[16] W. Z. Shen. Numerical modeling of wind turbine wakes. J. Fluids Eng,
124(2):393–399, 2002.

[17] M. Shives and C. Crawford. Mesh and load distribution requirements
for actuator line cfd simulations. Wind Energy, 16(8):1183–1196, 2013.

[18] D. M. Somers. S816, S817, and S818 Airfoils: October 1991–July1992.
Technical report, National Renewable Energy Lab., Golden, CO (US),
2004.

[19] D. M. Somers. The S825 and S826 airfoils. National Renewable Energy
Laboratory, Subcontractor Report, 2005.

[20] C. Sun, J. Ding, J. Zeng, and Y. Jin. A fitness approximation assisted
competitive swarm optimizer for large scale expensive optimization
problems. Memetic Computing, Jul 2016.

[21] N. Troldborg, J. N. Sørensen, and R. Mikkelsen. Actuator line simulation
of wake of wind turbine operating in turbulent inflow. In Journal of
physics: conference series, volume 75, page 012063. IOP Publishing,
2007.

[22] A. Tsanas and A. Xifara. Accurate quantitative estimation of energy
performance of residential buildings using statistical machine learning
tools. Energy and Buildings, 49:560–567, 2012.

[23] Y. Wang and I. Witten. Induction of model trees for predicting
continuous classes. In Poster papers of the 9th European Conference
on Machine Learning. Springer, 1997.

[24] P. Wesseling. Principles of computational fluid dynamics, volume 29.
Springer Science & Business Media, 2009.


