13,282 research outputs found

    Wind speed and direction shears with associated vertical motion during strong surface winds

    Get PDF
    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds

    Skylab S-193 Radscat microwave measurements of sea surface winds

    Get PDF
    The S-193 Radscat made extensive measurements of many sea conditions. Measurements were taken in a tropical hurricane (Ava), a tropical storm (Christine), and in portions of extratropical cyclones. Approximately 200 scans of ocean data at 105 kilometer spacings were taken during the first two Skylab missions and another 200 during the final mission when the characteristics of the measurements changed due to damage of the antenna. Backscatter with four transmit/receive polarization combinations and emissions with horizontal and vertical receive polarizations were measured. Other surface parameters investigated for correlation with the measurements included sea temperature, air/sea temperature difference, and gravity-wave spectrum. Methods were developed to correct the microwave measurements for atmospheric effects. The radiometric data were corrected accurately for clear sky and light cloud conditions only. The radiometer measurements were used to recover the surface scattering characteristics for all atmospheric conditions excluding rain. The radiometer measurements also detected the presence of rain which signaled when the scattering measurement should not be used for surface wind estimation. Regression analysis was used to determine empirically the relation between surface parameters and the microwave measurements, after correction for atmospheric effects. Results indicate a relationship approaching square-law at 50 deg between differential scattering coefficient and wind speed with horizontally polarized scattering data showing slightly more sensitivity to wind speed than vertically polarized data

    Correlation of sigma deg (0 deg) inferred wind speed estimates with NOAA hindcast data

    Get PDF
    Microwave remote sensing is discussed in terms of using GEOS-3 data to infer surface wind speed. Topics covered include: determining surface wind speed from backscattering, estimating surface winds from near normal incidence scattering, and response of the centimeter wavelength components of the ocean surface height spectrum to the wind

    Sea surface winds from sun glitter observations

    No full text
    International audienceSolar light reflected by the surface of the sea depends strongly on the sea state which is driven by the wind. The relationship between reflected light and wind speed is described by the well-known model of Cox and Munk. Using their model, a method is derived for the retrieval of the synoptic field of wind magnitude from measurements of the glitter pattern from space. The method is applied to data obtained by the TIROS-N satellite series. Comparison of the wind estimated in this way and the wind derived from isobaric charts shows very close agreement. The method is simple and has application over broad geographical areas

    On possible impact of the Indian summer monsoon on the ENSO

    Get PDF
    The Indian summer monsoon (ISM) could influence the El Nino and Southern Oscillation (ENSO) only if it could induce significant surface wind anomalies in the active regions of central and eastern equatorial Pacific. Using 50-year NCEP reanalysis, it is shown that observed surface winds in the central and eastern Pacific associated 'purely' with ISM and unrelated to ENSO are very weak (~0.5m.s-1). Strong surface winds in the central and eastern Pacific following a 'strong' or 'weak' ISM, noted in some earlier composite analyses, are related not to ISM but to the concurrent sea surface temperature (SST) forcing associated with the ENSO. A long run of an atmospheric general circulation model (AGCM) without inter-annual SST forcing also show that a 'pure' ISM induces only very weak surface winds in the equatorial central and eastern Pacific. Thus, we conclude that the ISM by itself is unlikely to influence the ENSO in a significant way

    Advanced 2-frequency ocean sensing radar using high resolution antenna beams

    Get PDF
    The opportunity to use a large space antenna system for remote sensing applications permits the creation of an advanced ocean sensing radar that combines the abilities of previously developed techniques. The 15 meter antenna will permit much higher angular and spatial resolution at the surface that will lead to techniques of observing ocean wave heights and the directional spectrum that had not previously been feasible from space. At the same time, sensors to measure ocean surface winds can be in operation and the data from both can be combined to increase the accuracy of each individual sensor. The existing capabilities and sensor techniques with typical data characteristics for the individual measurement of sea surface quantities are outlined

    Saltation threshold reduction due to the electrostatic agglomeration of fine particles

    Get PDF
    Particles between 80 and 110 microns in diameter are the most easily moved by the wind. As the particle size decreases below 60 microns, they are increasingly more difficult to move by surface winds, and a number of experiments were performed in an attempt to reduce the required wind velocity. These include: (1) the bombardment of a bed of fine particles by particles near the optimum size, the larger particles kicking the fine particles into the windstream where they are entrained; and (2) the electrostatic agglomeration of fine particles into sizes more easily saltated. The results of these experiments are discussed
    • …
    corecore