44,081 research outputs found

    Scarred Patterns in Surface Waves

    Full text link
    Surface wave patterns are investigated experimentally in a system geometry that has become a paradigm of quantum chaos: the stadium billiard. Linear waves in bounded geometries for which classical ray trajectories are chaotic are known to give rise to scarred patterns. Here, we utilize parametrically forced surface waves (Faraday waves), which become progressively nonlinear beyond the wave instability threshold, to investigate the subtle interplay between boundaries and nonlinearity. Only a subset (three main types) of the computed linear modes of the stadium are observed in a systematic scan. These correspond to modes in which the wave amplitudes are strongly enhanced along paths corresponding to certain periodic ray orbits. Many other modes are found to be suppressed, in general agreement with a prediction by Agam and Altshuler based on boundary dissipation and the Lyapunov exponent of the associated orbit. Spatially asymmetric or disordered (but time-independent) patterns are also found even near onset. As the driving acceleration is increased, the time-independent scarred patterns persist, but in some cases transitions between modes are noted. The onset of spatiotemporal chaos at higher forcing amplitude often involves a nonperiodic oscillation between spatially ordered and disordered states. We characterize this phenomenon using the concept of pattern entropy. The rate of change of the patterns is found to be reduced as the state passes temporarily near the ordered configurations of lower entropy. We also report complex but highly symmetric (time-independent) patterns far above onset in the regime that is normally chaotic.Comment: 9 pages, 10 figures (low resolution gif files). Updated and added references and text. For high resolution images: http://physics.clarku.edu/~akudrolli/stadium.htm

    In-Plane Focusing of Terahertz Surface Waves on a Gradient Index Metamaterial Film

    Full text link
    We designed and implemented a gradient index metasurface for the in-plane focusing of confined terahertz surface waves. We measured the spatial propagation of the surface waves by two-dimensional mapping of the complex electric field using a terahertz near-field spectroscope. The surface waves were focused to a diameter of 500 \micro m after a focal length of approx. 2 mm. In the focus, we measured a field amplitude enhancement of a factor of 3.Comment: 6 pages, 4 figure

    Superlattice Patterns in Surface Waves

    Full text link
    We report novel superlattice wave patterns at the interface of a fluid layer driven vertically. These patterns are described most naturally in terms of two interacting hexagonal sublattices. Two frequency forcing at very large aspect ratio is utilized in this work. A superlattice pattern ("superlattice-I") consisting of two hexagonal lattices oriented at a relative angle of 22^o is obtained with a 6:7 ratio of forcing frequencies. Several theoretical approaches that may be useful in understanding this pattern have been proposed. In another example, the waves are fully described by two superimposed hexagonal lattices with a wavelength ratio of sqrt(3), oriented at a relative angle of 30^o. The time dependence of this "superlattice-II" wave pattern is unusual. The instantaneous patterns reveal a time-periodic stripe modulation that breaks the 6-fold symmetry at any instant, but the stripes are absent in the time average. The instantaneous patterns are not simply amplitude modulations of the primary standing wave. A transition from the superlattice-II state to a 12-fold quasi-crystalline pattern is observed by changing the relative phase of the two forcing frequencies. Phase diagrams of the observed patterns (including superlattices, quasicrystalline patterns, ordinary hexagons, and squares) are obtained as a function of the amplitudes and relative phases of the driving accelerations.Comment: 15 pages, 14 figures (gif), to appear in Physica

    Two-dimensional surface waves in magnetohydrodynamics

    Get PDF
    The study of nonlinear waves in water has a long history beginning with the seminal paper by Korteweg & de Vries (Phil. Mag., vol. 39, 1895, p. 240) and more recently for magnetohydrodynamics Danov & Ruderman (Fluid Dyn., vol. 18, 1983, pp. 751–756). The appearance of a Hilbert transform in the nonlinear equation for magnetohydrodynamics (MHD) distinguishes it from the water wave model description. In this paper, we are interested in examining weakly nonlinear interfacial waves in dimensions. First, we determine the wave solution in the linear case. Next, we derive the corresponding generalisation for the Kadomtsev–Petviashvili (KP) equation with the inclusion of an equilibrium magnetic field. The derived governing equation is a generalisation of the Benjamin–Ono (BO) equation called the Benjamin equation first derived in Benjamin (J. Fluid Mech., vol. 245, 1992, pp. 401–411) and in the higher-dimensional context in Kim & Akylas (J. Fluid Mech., vol. 557, 2006, pp. 237–256)

    Diffraction-Free Bloch Surface Waves

    Full text link
    In this letter, we demonstrate a novel diffraction-free Bloch surface wave (DF-BSW) sustained on all-dielectric multilayers that does not diffract after being passed through three obstacles or across a single mode fiber. It can propagate in a straight line for distances longer than 110 {\mu}m at a wavelength of 633 nm and could be applied as an in-plane optical virtual probe, both in air and in an aqueous environment. The ability to be used in water, its long diffraction-free distance, and its tolerance to multiple obstacles make this DF-BSW ideal for certain applications in areas such as the biological sciences, where many measurements are made on glass surfaces or for which an aqueous environment is required, and for high-speed interconnections between chips, where low loss is necessary. Specifically, the DF-BSW on the dielectric multilayer can be used to develop novel flow cytometry that is based on the surface wave, but not the free space beam, to detect the surface-bound targets

    Surface waves enhance particle dispersion

    Full text link
    We study the horizontal dispersion of passive tracer particles on the free surface of gravity waves in deep water. For random linear waves with the JONSWAP spectrum, the Lagrangian particle trajectories are computed using an exact nonlinear model known as the John--Sclavounos equation. We show that the single-particle dispersion exhibits an unusual super-diffusive behavior. In particular, for large times tt, the variance of the tracer ⟨∣X(t)∣2⟩\langle |X(t)|^2\rangle increases as a quadratic function of time, i.e., ⟨∣X(t)∣2⟩∼t2\langle |X(t)|^2\rangle\sim t^2. This dispersion is markedly faster than Taylor's single-particle dispersion theory which predicts that the variance of passive tracers grows linearly with time for large tt. Our results imply that the wave motion significantly enhances the dispersion of fluid particles. We show that this super-diffusive behavior is a result of the long-term correlation of the Lagrangian velocities of fluid parcels on the free surface

    Dispersion and damping of potential surface waves in a degenerate plasma

    Full text link
    Potential (electrostatic) surface waves in plasma half-space with degenerate electrons are studied using the quasi-classical mean-field kinetic model. The wave spectrum and the collisionless damping rate are obtained numerically for a wide range of wavelengths. In the limit of long wavelengths, the wave frequency ω\omega approaches the cold-plasma limit ω=ωp/2\omega=\omega_p/\sqrt{2} with ωp\omega_p being the plasma frequency, while at short wavelengths, the wave spectrum asymptotically approaches the spectrum of zero-sound mode propagating along the boundary. It is shown that the surface waves in this system remain weakly damped at all wavelengths (in contrast to strongly damped surface waves in Maxwellian electron plasmas), and the damping rate nonmonotonically depends on the wavelength, with the maximum (yet small) damping occuring for surface waves with wavelength of ≈5πλF\approx5\pi\lambda_{F}, where λF\lambda_{F} is the Thomas-Fermi length.Comment: 22 pages, 6 figure
    • …
    corecore