7 research outputs found

    Measuring Coseismic Deformation With Spaceborne Synthetic Aperture Radar: A Review

    Get PDF
    In the past 25 years, space-borne Synthetic Aperture Radar imagery has become an increasingly available data source for the study of crustal deformation associated with moderate to large earthquakes (M > 4.0). Coseismic surface deformation can be measured with several well-established techniques, the applicability of which depends on the ground displacement pattern, on several radar parameters, and on the surface properties at the time of the radar acquisitions. The state-of-the-art concerning the measurement techniques is reviewed, and their application to over 100 case-studies since the launch of the Sentinel-1a satellite is discussed, including the performance of the different methods and the data processing aspects, which still constitute topics of ongoing research

    Assessment of Paleo-Landscape Features using Advanced Remote Sensing Techniques, Modelling and GIS Methods in the Lake Manyara Basin, Northern Tanzania

    Get PDF
    In researching the evolution of hominids, the East African Rift System acts as a vital region. The rift valleys enabled some of the most sensational hominid findings to date. Various hypotheses have been developed in the last decades, which try to explain the influence of changes in paleo-climate, paleo-landscape and paleo-environment on hominin evolution in the Quaternary. Additionally, the sediments and the morphology of the East African Rift System provide excellent terrestrial archives for paleo-environmental reconstruction. Lake Manyara is located in an endorheic basin in the eastern arm of the East African Rift System in northern Tanzania. The surroundings of the Lake Manyara are in the focus of paleontological and archaeological investigations. For instance, two hominin bearing sites were found within the catchment of the Makuyuni River, as well as artefacts and fossils are periodically uncovered. The study area, which is located east of the present-day lake, provides an insight into relevant geological and geomorphological drivers of paleo-landscape evolution of the whole region. This thesis aims at contributing to the understanding of landscape evolution in the Lake Manyara region. Compared to other regions in the East African rift system, few landscape evolution studies took place for the Lake Manyara basin. As such, an integrative scientific investigation of the spatial situation of paleo-landscape features and of paleo-lake level fluctuations is missing. The proposed study utilizes state-of-the-art remote sensing based research methods in evaluating the landscape, and in concluding from present-day landforms and processes, how the landscape developed during the Pleistocene and Holocene. In striving to accomplish this goal, this cumulative dissertation comprises eight central research questions, which are introduced in a conceptual framework. The research questions have been considered in seven scientific publications, which describe the applied methodologies and results in detail. The framework of the thesis provides a coherent and detailed interpretation and discussion of the scientific findings. The research questions and outcomes of the analyses are listed below. Key drivers of landscape development in the East African Rift System are tectonic and tectonically induced processes. Drainage network, stream longitudinal profiles and basin analysis based on topographic analyses, as well as lineaments extracted from remote sensing images, were successfully used as methods in identifying tectonic activity and related features in rift areas. The application of a gully erosion model suggests that the gully channel systems in the study area are relatively stable and that they had developed prior to the last significant lake regression. The paleo-landscape and the paleo-environment are closely connected to lake level changes of the paleo-Lake Manyara. Hence, a key question concerns the extent of the Manyara Beds, which are lacustrine deposits that indicate the maximum extent of the paleo-Lake Manyara. A combined analysis, utilizing ASTER multispectral indices and topographic parameters from a digital elevation model, led to the spatial delineation of lacustrine sediments. Their extent indicates a relation to lacustrine sediments in the southern part of the basin, and reveals lacustrine / palustrine deposits further east. A methodological comparison of Support Vector Machines and Boosted Regression Trees, which served as classification methods to identify the lacustrine sediments, exhibited high accuracies for both approaches, with minor advantages for Support Vector Machines. Closely related to the previous research question is the question on the spatial distribution of surface substrates. By incorporating a WorldView-2 scene and Synthetic Aperture Radar data to the previously mentioned datasets, it was possible to distinguish between nine topsoil and lithological target classes in the study area. The surface substrates indicate the underlying lithologies, sediments and soils, as well as soil formation processes. Between the village of Makuyuni and the present-day Lake Manyara, paleo-shorelines and terraces were formed by various paleo-lake levels. Questions arise, at which elevation these features occur and what is the maximum elevation, which was reached. ALOS PALSAR and TerraSAR-X backscatter intensity information provided the possibility of an area-wide mapping of those morphological features. Some radiometric dates exist for stromatolites from a distinct paleo-shoreline level, which support the interpretation of the lake fluctuations. The paleo-shoreline, which was identified with the highest elevation, coincides with the elevation of the lowest possible outlet of the closed Manyara basin. It can be assumed that the paleo-Lake Manyara over-spilled into the neighboring Engaruka and Natron-Magadi basins. The question of the location of sites with a high probability of artefact and/or fossil presence is important for future archaeological and paleontological research. ASTER remote sensing data and topographic indices contributed likewise to the predictive modelling of probabilities of archaeological and paleontological sites in the study area. Generally, paleontological sites are found on a higher elevation, compared to Stone Age sites. In addition, fossil sites seem to be related to stable paleo-landscape features according to this study’s findings. The results of this dissertation provide new insights in the landscape development of the Lake Manyara basin. The scientific findings contribute to the understanding of the landscape evolution for the study area, as well as for the neighboring basins in the East African Rift System. The applied geospatial methodologies can be transferred to other study areas with similar research needs

    Progress in Landslide Research and Technology, Volume 1 Issue 2, 2022

    Get PDF
    This open access book provides an overview of the progress in landslide research and technology and is part of a book series of the International Consortium on Landslides (ICL). It gives an overview of recent progress in landslide research and technology for practical applications and the benefit for the society contributing to understanding and reducing landslide disaster risk

    X-ray fluorescence applied to yellow pigments based on lead, tin and antimony: comparison of laboratory and portable instrumentation

    Get PDF
    X-ray fluorescence is a diagnostic approach particularly suited to be utilized in cultural heritage sector since it falls in the non-destructive and non-invasive analytical tools. However there are big differences between portable and laboratory instrumentation that make difficult to perform a comparison in terms of quality and reliability of the results. The present study is specifically addressed to investigate these differences in respect of the same analytical sample-set. To reach this goal a comparison was thus carried out between portable and bench top devices X-ray fluorescence devices and techniques were used on different type of yellow pigments based on lead, tin and antimony obtained in laboratory, reproducing the instructions described in “old” recipes, that is: i) mortar of lead and tin produced on the basis of the recipe 13 /c V of the “Manuscript of Danzica” and “ Li tre libri dell’arte del Vasaio” by Cipriano Piccolpasso; ii) two types of lead and tin yellow (Pb2SnO4 and PbSnO3) produced starting from the indications of the 272 and 273 recipes of the “Bolognese Manuscript”; iii) lead antimonate (Pb2Sb2O7) obtained by following the instructions of the Piccolpasso’s treatise and those contained on the “Istoria delle pitture in maiolica fatte in Pesaro e ne’ luoghi circonvicini di Giambattista Passeri” and finally iv) lead, tin and antimony yellow (Pb2SnSbO6,5) obtained starting from the information contained in the paper 30 R of “Manuscript of Danzica” [1]. The XRF analysis were performed using a laboratory instrumentation (Bruker M4 Tornado) and a handset analytical device (Assing Surface Monitor). In order to perform a significant statistical comparison among acquired and processed data, all the analyses have been carried out utilizing the same sample, the same acquisition set up and operative conditions. A chemometric approach, based on the utilization of Principal Component Analysis (PCA) and multivariate analytical based tools [2], was utilized in order to verify the spectral differences, and related informative content, among the different produced yellow pigments. The multivariate approach on the results revealed instrumental differences between the two systems and allowed to compare the common characteristics of the set of pigments analyzed
    corecore