174 research outputs found

    Surface code quantum computing by lattice surgery

    Full text link
    In recent years, surface codes have become a leading method for quantum error correction in theoretical large scale computational and communications architecture designs. Their comparatively high fault-tolerant thresholds and their natural 2-dimensional nearest neighbour (2DNN) structure make them an obvious choice for large scale designs in experimentally realistic systems. While fundamentally based on the toric code of Kitaev, there are many variants, two of which are the planar- and defect- based codes. Planar codes require fewer qubits to implement (for the same strength of error correction), but are restricted to encoding a single qubit of information. Interactions between encoded qubits are achieved via transversal operations, thus destroying the inherent 2DNN nature of the code. In this paper we introduce a new technique enabling the coupling of two planar codes without transversal operations, maintaining the 2DNN of the encoded computer. Our lattice surgery technique comprises splitting and merging planar code surfaces, and enables us to perform universal quantum computation (including magic state injection) while removing the need for braided logic in a strictly 2DNN design, and hence reduces the overall qubit resources for logic operations. Those resources are further reduced by the use of a rotated lattice for the planar encoding. We show how lattice surgery allows us to distribute encoded GHZ states in a more direct (and overhead friendly) manner, and how a demonstration of an encoded CNOT between two distance 3 logical states is possible with 53 physical qubits, half of that required in any other known construction in 2D.Comment: Published version. 29 pages, 18 figure

    A silicon-based surface code quantum computer

    Get PDF
    Individual impurity atoms in silicon can make superb individual qubits, but it remains an immense challenge to build a multi-qubit processor: there is a basic conflict between nanometre separation desired for qubit–qubit interactions and the much larger scales that would enable control and addressing in a manufacturable and fault-tolerant architecture. Here we resolve this conflict by establishing the feasibility of surface code quantum computing using solid-state spins, or ‘data qubits’, that are widely separated from one another. We use a second set of ‘probe’ spins that are mechanically separate from the data qubits and move in and out of their proximity. The spin dipole–dipole interactions give rise to phase shifts; measuring a probe’s total phase reveals the collective parity of the data qubits along the probe’s path. Using a protocol that balances the systematic errors due to imperfect device fabrication, our detailed simulations show that substantial misalignments can be handled within fault-tolerant operations. We conclude that this simple ‘orbital probe’ architecture overcomes many of the difficulties facing solid-state quantum computing, while minimising the complexity and offering qubit densities that are several orders of magnitude greater than other systems

    Fault-tolerance thresholds for the surface code with fabrication errors

    Get PDF
    The construction of topological error correction codes requires the ability to fabricate a lattice of physical qubits embedded on a manifold with a non-trivial topology such that the quantum information is encoded in the global degrees of freedom (i.e. the topology) of the manifold. However, the manufacturing of large-scale topological devices will undoubtedly suffer from fabrication errors---permanent faulty components such as missing physical qubits or failed entangling gates---introducing permanent defects into the topology of the lattice and hence significantly reducing the distance of the code and the quality of the encoded logical qubits. In this work we investigate how fabrication errors affect the performance of topological codes, using the surface code as the testbed. A known approach to mitigate defective lattices involves the use of primitive SWAP gates in a long sequence of syndrome extraction circuits. Instead, we show that in the presence of fabrication errors the syndrome can be determined using the supercheck operator approach and the outcome of the defective gauge stabilizer generators without any additional computational overhead or the use of SWAP gates. We report numerical fault-tolerance thresholds in the presence of both qubit fabrication and gate fabrication errors using a circuit-based noise model and the minimum-weight perfect matching decoder. Our numerical analysis is most applicable to 2D chip-based technologies, but the techniques presented here can be readily extended to other topological architectures. We find that in the presence of 8% qubit fabrication errors, the surface code can still tolerate a computational error rate of up to 0.1%.Comment: 10 pages, 15 figure

    How to test the "quantumness" of a quantum computer?

    Get PDF
    We discuss whether, to what extent and how a quantum computing device can be evaluated and simulated using classical tools.Comment: Submitted 12.10.201

    A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery

    Get PDF
    Given a quantum gate circuit, how does one execute it in a fault-tolerant architecture with as little overhead as possible? In this paper, we discuss strategies for surface-code quantum computing on small, intermediate and large scales. They are strategies for space-time trade-offs, going from slow computations using few qubits to fast computations using many qubits. Our schemes are based on surface-code patches, which not only feature a low space cost compared to other surface-code schemes, but are also conceptually simple~--~simple enough that they can be described as a tile-based game with a small set of rules. Therefore, no knowledge of quantum error correction is necessary to understand the schemes in this paper, but only the concepts of qubits and measurements
    • …
    corecore